
Matplotlib

 i

Matplotlib

 i

About the Tutorial

Matplotlib is one of the most popular Python packages used for data visualization. It is a

cross-platform library for making 2D plots from data in arrays. It provides an object-

oriented API that helps in embedding plots in applications using Python GUI toolkits such

as PyQt, WxPythonotTkinter. It can be used in Python and IPython shells, Jupyter notebook

and web application servers also.

Audience

This tutorial is designed for those learners who wish to acquire knowledge on the basics

of data visualization.

Prerequisites

Matplotlib is written in Python and makes use of NumPy, the numerical mathematics

extension of Python. We assume that the readers of this tutorial have basic knowledge of

Python.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

Matplotlib

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Matplotlib – Introduction ... 1

2. Matplotlib – Environment Setup ... 2

3. Matplotlib – Anaconda distribution .. 4

4. Matplotlib – Jupyter Notebook ... 5

5. Matplotlib – Pyplot API ... 9

6. Matplotlib – Simple Plot ... 12

7. Matplotlib – PyLab module ... 16

Basic Plotting ... 16

8. Matplotlib – Object-oriented Interface ... 19

 Matplotlib – Figure Class.. 22

9. Matplotlib – Figure Class

10. Matplotlib – Axes Class ... 23

11. Matplotlib – Multiplots ... 27

12. Matplotlib – Subplots() Function... 31

13. Matplotlib – Subplot2grid() function ... 33

14. Matplotlib – Grids ... 35

 Matplotlib – Formatting Axes... 36

15. Matplotlib – Formatting Axes

16. Matplotlib – Setting Limits .. 39

17. Matplotlib – Setting Ticks and Tick Labels ... 41

18. Matplotlib – Twin Axes ... 43

Matplotlib

 iii

19. Matplotlib – Bar Plot ... 44

20. Matplotlib – Histogram ... 48

21. Matplotlib – Pie Chart ... 50

22. Matplotlib – Scatter Plot ... 52

23. Matplotlib – Contour Plot ... 54

24. Matplotlib – Quiver Plot ... 56

25. Matplotlib – Box Plot .. 58

26. Matplotlib – Violin Plot ... 60

27. Matplotlib – Three-dimensional Plotting .. 62

28. Matplotlib – 3D Contour Plot .. 65

29. Matplotlib – 3D Wireframe plot .. 67

30. Matplotlib – 3D Surface plot ... 69

31. Matplotlib – Working With Text ... 71

32. Matplotlib – Mathematical Expressions .. 73

33. Matplotlib – Working with Images .. 75

34. Matplotlib – Transforms ... 77

Matplotlib

 1

Matplotlib is one of the most popular Python packages used for data visualization. It is a

cross-platform library for making 2D plots from data in arrays. Matplotlib is written in

Python and makes use of NumPy, the numerical mathematics extension of Python. It

provides an object-oriented API that helps in embedding plots in applications using Python

GUI toolkits such as PyQt, WxPythonotTkinter. It can be used in Python and IPython shells,

Jupyter notebook and web application servers also.

Matplotlib has a procedural interface named the Pylab, which is designed to resemble

MATLAB, a proprietary programming language developed by MathWorks. Matplotlib along

with NumPy can be considered as the open source equivalent of MATLAB.

Matplotlib was originally written by John D. Hunter in 2003. The current stable version is

2.2.0 released in January 2018.

1. Matplotlib – Introduction

Matplotlib

 2

Matplotlib and its dependency packages are available in the form of wheel packages on

the standard Python package repositories and can be installed on Windows, Linux as well

as MacOS systems using the pip package manager.

pip3 install matplotlib

Incase Python 2.7 or 3.4 versions are not installed for all users, the Microsoft Visual C++

2008 (64 bit or 32 bit forPython 2.7) or Microsoft Visual C++ 2010 (64 bit or 32 bit for

Python 3.4) redistributable packages need to be installed.

If you are using Python 2.7 on a Mac, execute the following command:

xcode-select –install

Upon execution of the above command, the subprocess32 - a dependency, may be

compiled.

On extremely old versions of Linux and Python 2.7, you may need to install the master

version of subprocess32.

Matplotlib requires a large number of dependencies:

 Python (>= 2.7 or >= 3.4)

 NumPy

 setuptools

 dateutil

 pyparsing

 libpng

 pytz

 FreeType

 cycler

 six

Optionally, you can also install a number of packages to enable better user interface

toolkits.

 tk

 PyQt4

 PyQt5

 pygtk

2. Matplotlib – Environment Setup

Matplotlib

 3

 wxpython

 pycairo

 Tornado

For better support of animation output format and image file formats, LaTeX, etc., you can

install the following:

 _mpeg/avconv

 ImageMagick

 Pillow (>=2.0)

 LaTeX and GhostScript (for rendering text with LaTeX).

Matplotlib

 4

Anaconda is a free and open source distribution of the Python and R programming

languages for large-scale data processing, predictive analytics, and scientific computing.

The distribution makes package management and deployment simple and easy. Matplotlib

and lots of other useful (data) science tools form part of the distribution. Package versions

are managed by the package management system Conda. The advantage of Anaconda is

that you have access to over 720 packages that can easily be installed with

Anaconda's Conda, a package, dependency, and environment manager.

Anaconda distribution is available for installation at

https://www.anaconda.com/download/. For installation on Windows, 32 and 64 bit

binaries are available:

https://repo.continuum.io/archive/Anaconda3-5.1.0-Windows-x86.exe

https://repo.continuum.io/archive/Anaconda3-5.1.0-Windows-x86_64.exe

Installation is a fairly straightforward wizard based process. You can choose between

adding Anaconda in PATH variable and registering Anaconda as your default Python.

For installation on Linux, download installers for 32 bit and 64 bit installers from the

downloads page:

https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86.sh

https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86_64.sh

Now, run the following command from the Linux terminal:

$ bash Anaconda3-5.0.1-Linux-x86_64.sh

Canopy and ActiveState are the most sought after choices for Windows, macOS and

common Linux platforms. The Windows users can find an option in WinPython.

3. Matplotlib – Anaconda distribution

Matplotlib

 5

Jupyter is a loose acronym meaning Julia, Python, and R. These programming languages

were the first target languages of the Jupyter application, but nowadays, the notebook

technology also supports many other languages.

In 2001, Fernando Pérez started developing Ipython. IPython is a command shell for

interactive computing in multiple programming languages, originally developed for the

Python.

Consider the following features provided by IPython:

 Interactive shells (terminal and Qt-based).

 A browser-based notebook with support for code, text, mathematical expressions,

inline plots and other media.

 Support for interactive data visualization and use of GUI toolkits.

 Flexible, embeddable interpreters to load into one's own projects.

In 2014, Fernando Pérez announced a spin-off project from IPython called Project Jupyter.

IPython will continue to exist as a Python shell and a kernel for Jupyter, while the notebook

and other language-agnostic parts of IPython will move under the Jupyter name. Jupyter

added support for Julia, R, Haskell and Ruby.

To start the Jupyter notebook, open Anaconda navigator (a desktop graphical user

interface included in Anaconda that allows you to launch applications and easily manage

Conda packages, environments and channels without the need to use command line

commands).

4. Matplotlib – Jupyter Notebook

Matplotlib

 6

Navigator displays the installed components in the distribution.

Matplotlib

 7

Launch Jupyter Notebook from the Navigator:

You will see the application opening in the web browser on the following

address: http://localhost:8888.

Matplotlib

 8

You probably want to start by making a new notebook. You can easily do this by clicking

on the "New button" in the "Files tab". You see that you have the option to make a regular

text file, a folder, and a terminal. Lastly, you will also see the option to make a Python 3

notebook.

Matplotlib

 9

A new untitled notebook with the .ipynb extension (stands for the IPython notebook) is

displayed in the new tab of the browser.

matplotlib.pyplot is a collection of command style functions that make Matplotlib work

like MATLAB. Each Pyplot function makes some change to a figure. For example, a function

creates a figure, a plotting area in a figure, plots some lines in a plotting area, decorates

the plot with labels, etc.

Types of Plots

Function Description

5. Matplotlib – Pyplot API

Matplotlib

 10

Bar Make a bar plot.

Barh Make a horizontal bar plot.

Boxplot Make a box and whisker plot.

Hist Plot a histogram.

hist2d Make a 2D histogram plot.

Pie Plot a pie chart.

Plot Plot lines and/or markers to the Axes.

Polar Make a polar plot.

Scatter Make a scatter plot of x vs y.

Stackplot Draws a stacked area plot.

Stem Create a stem plot.

Step Make a step plot.

Quiver Plot a 2-D field of arrows.

Image Functions

Function Description

Imread Read an image from a file into an array.

Imsave Save an array as in image file.

Imshow Display an image on the axes.

Matplotlib

 11

Axis Functions

Function Description

Axes Add axes to the figure.

Text Add text to the axes.

Title Set a title of the current axes.

Xlabel Set the x axis label of the current axis.

Xlim Get or set the x limits of the current axes.

Xscale Set the scaling of the x-axis.

Xticks Get or set the x-limits of the current tick locations and labels.

Ylabel Set the y axis label of the current axis.

Ylim Get or set the y-limits of the current axes.

Yscale Set the scaling of the y-axis.

Yticks Get or set the y-limits of the current tick locations and labels.

Figure Functions

Function Description

Figtext Add text to figure.

Figure Creates a new figure.

Show Display a figure.

Savefig Save the current figure.

Close Close a figure window.

Matplotlib

 12

In this chapter, we will learn how to create a simple plot with Matplotlib.

We shall now display a simple line plot of angle in radians vs. its sine value in Matplotlib.

To begin with, the Pyplot module from Matplotlib package is imported, with an alias plt as

a matter of convention.

import matplotlib.pyplot as plt

Next we need an array of numbers to plot. Various array functions are defined in the

NumPy library which is imported with the np alias.

import numpy as np

We now obtain the ndarray object of angles between 0 and 2π using the arange() function

from the NumPy library.

x=np.arange(0, math.pi*2, 0.05)

The ndarray object serves as values on x axis of the graph. The corresponding sine values

of angles in x to be displayed on y axis are obtained by the following statement:

y=np.sin(x)

The values from two arrays are plotted using the plot() function.

plt.plot(x,y)

You can set the plot title, and labels for x and y axes.

plt.xlabel("angle")

plt.ylabel("sine")

plt.title('sine wave')

The Plot viewer window is invoked by the show() function:

plt.show()

6. Matplotlib – Simple Plot

Matplotlib

 13

The complete program is as follows:

from matplotlib import pyplot as plt

import numpy as np

import math #needed for definition of pi

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

plt.plot(x,y)

plt.xlabel("angle")

plt.ylabel("sine")

plt.title('sine wave')

plt.show()

When the above line of code is executed, the following graph is displayed:

Now, use the Jupyter notebook with Matplotlib.

Launch the Jupyter notebook from Anaconda navigator or command line as described

earlier. In the input cell, enter import statements for Pyplot and NumPy:

from matplotlib import pyplot as plt

import numpy as np

Matplotlib

 14

To display plot outputs inside the notebook itself (and not in the separate viewer), enter

the following magic statement:

%matplotlib inline

Obtain x as the ndarray object containing angles in radians between 0 to 2π, and y as sine

value of each angle:

import math

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

Set labels for x and y axes as well as the plot title:

plt.xlabel("angle")

plt.ylabel("sine")

plt.title('sine wave')

Finally execute the plot() function to generate the sine wave display in the notebook (no

need to run the show() function):

plt.plot(x,y)

Matplotlib

 15

After the execution of the final line of code, the following output is displayed:

Matplotlib

 16

PyLab is a procedural interface to the Matplotlib object-oriented plotting library. Matplotlib

is the whole package; matplotlib.pyplot is a module in Matplotlib; and PyLab is a module

that gets installed alongside Matplotlib.

PyLab is a convenience module that bulk imports matplotlib.pyplot (for plotting) and

NumPy (for Mathematics and working with arrays) in a single name space. Although many

examples use PyLab, it is no longer recommended.

Basic Plotting

Plotting curves is done with the plot command. It takes a pair of same-length arrays (or

sequences):

from numpy import *

from pylab import *

x = linspace(-3, 3, 30)

y = x**2

plot(x, y)

show()

The above line of code generates the following output:

7. Matplotlib – PyLab module

Matplotlib

 17

To plot symbols rather than lines, provide an additional string argument.

symbols - , –, -., , . , , , o , ^ , v , < , > , s , + , x , D , d , 1 , 2 , 3 , 4 , h , H , p ,

| , _

colors b, g, r, c, m, y, k, w

Now, consider executing the following code:

from pylab import *

x = linspace(-3, 3, 30)

y = x**2

plot(x, y, 'r.')

show()

It plots the red dots as shown below:

Plots can be overlaid. Just use the multiple plot commands. Use clf() to clear the plot.

from pylab import *

plot(x, sin(x))

plot(x, cos(x), 'r-')

plot(x, -sin(x), 'g--')

show()

Matplotlib

 18

The above line of code generates the following output:

Matplotlib

 19

While it is easy to quickly generate plots with the matplotlib.pyplot module, the use of

object-oriented approach is recommended as it gives more control and customization of

your plots. Most of the functions are also available in the matplotlib.axes.Axes class.

The main idea behind using the more formal object-oriented method is to create figure

objects and then just call methods or attributes off of that object. This approach helps

better in dealing with a canvas that has multiple plots on it.

In object-oriented interface, Pyplot is used only for a few functions such as figure creation,

and the user explicitly creates and keeps track of the figure and axes objects. At this level,

the user uses Pyplot to create figures, and through those figures, one or more axes objects

can be created. These axes objects are then used for most plotting actions.

To begin with, we create a figure instance which provides an empty canvas.

fig = plt.figure()

Now add axes to figure. The add_axes() method requires a list object of 4 elements

corresponding to left, bottom, width and height of the figure. Each number must be

between 0 and 1:

ax=fig.add_axes([0,0,1,1])

Set labels for x and y axis as well as title:

ax.set_title("sine wave")

ax.set_xlabel('angle')

ax.set_ylabel('sine')

Invoke the plot() method of the axes object.

ax.plot(x,y)

If you are using Jupyter notebook, the %matplotlib inline directive has to be issued; the

otherwistshow() function of pyplot module displays the plot.

Consider executing the following code:

from matplotlib import pyplot as plt

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

8. Matplotlib – Object-oriented Interface

Matplotlib

 20

y=np.sin(x)

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.plot(x,y)

ax.set_title("sine wave")

ax.set_xlabel('angle')

ax.set_ylabel('sine')

plt.show()

Output

The above line of code generates the following output:

Matplotlib

 21

The same code when run in Jupyter notebook shows the output as shown below:

Matplotlib

 22

The matplotlib.figure module contains the Figure class. It is a top-level container for all

plot elements. The Figure object is instantiated by calling the figure() function from the

pyplot module:

fig=plt.figure()

The following table shows the additional parameters:

Figsize (width,height) tuple in inches

Dpi Dots per inches

Facecolor Figure patch facecolor

Edgecolor Figure patch edge color

Linewidth Edge line width

9. Matplotlib – Figure Class

Matplotlib

 23

Axes object is the region of the image with the data space. A given figure can contain

many Axes, but a given Axes object can only be in one Figure. The Axes contains two (or

three in the case of 3D) Axis objects. The Axes class and its member functions are the

primary entry point to working with the OO interface.

Axes object is added to figure by calling the add_axes() method. It returns the axes object

and adds an axes at position rect [left, bottom, width, height] where all quantities are in

fractions of figure width and height.

Parameter

Following is the parameter for the Axes class:

 rect: A 4-length sequence of [left, bottom, width, height] quantities.

ax=fig.add_axes([0,0,1,1])

The following member functions of axes class add different elements to plot:

Legend

The legend() method of axes class adds a legend to the plot figure. It takes three

parameters:

ax.legend(handles, labels, loc)

Where labels is a sequence of strings and handles a sequence of Line2D or Patch instances.

loc can be a string or an integer specifying the legend location.

Location string Location code

Best 0

upper right 1

upper left 2

lower left 3

lower right 4

Right 5

center left 6

Center right 7

lower center 8

10. Matplotlib – Axes Class

Matplotlib

 24

upper center 9

Center 10

axes.plot()

This is the basic method of axes class that plots values of one array versus another as

lines or markers. The plot() method can have an optional format string argument to specify

color, style and size of line and marker.

Color codes

Character Color

‘b’ Blue

‘g’ Green

‘r’ Red

‘c’ Cyan

‘m’ Magenta

‘y’ Yellow

‘k’ Black

‘w’ White

Marker codes

Character Description

‘.’ Point marker

‘o’ Circle marker

‘x’ X marker

‘D’ Diamond marker

‘H’ Hexagon marker

‘s’ Square marker

‘+’ Plus marker

Line styles

Character Description

‘-‘ Solid line

Matplotlib

 25

‘—‘ Dashed line

‘-.’ Dash-dot line

‘:’ Dotted line

Following example shows the advertisement expenses and sales figures of TV and

smartphone in the form of line plots. Line representing TV is a solid line with yellow colour

and square markers whereas smartphone line is a dashed line with green colour and circle

marker.

import matplotlib.pyplot as plt

y = [1, 4, 9, 16, 25,36,49, 64]

x1 = [1, 16, 30, 42,55, 68, 77,88]

x2 = [1,6,12,18,28, 40, 52, 65]

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

l1=ax.plot(x1,y,'ys-') # solid line with yellow colour and square marker

l2=ax.plot(x2,y,'go--') # dash line with green colour and circle marker

ax.legend(labels=('tv', 'Smartphone'), loc='lower right') # legend placed at

lower right

ax.set_title("Advertisement effect on sales")

ax.set_xlabel('medium')

ax.set_ylabel('sales')

plt.show()

Matplotlib

 26

When the above line of code is executed, it produces the following plot:

Matplotlib

 27

In this chapter, we will learn how to create multiple subplots on same canvas.

The subplot() function returns the axes object at a given grid position. The Call signature

of this function is:

plt.subplot(subplot(nrows, ncols, index)

In the current figure, the function creates and returns an Axes object, at position index of

a grid of nrows by ncolsaxes. Indexes go from 1 to nrows * ncols, incrementing in row-

major order.Ifnrows, ncols and index are all less than 10. The indexes can also be given

as single, concatenated, threedigitnumber.

For example, subplot(2, 3, 3) and subplot(233) both create an Axes at the top right corner

of the current figure, occupying half of the figure height and a third of the figure width.

Creating a subplot will delete any pre-existing subplot that overlaps with it beyond sharing

a boundary.

import matplotlib.pyplot as plt

plot a line, implicitly creating a subplot(111)

plt.plot([1,2,3])

now create a subplot which represents the top plot of a grid with 2 rows and

1 column.

#Since this subplot will overlap the first, the plot (and its axes) previously

created, will be removed

plt.subplot(211)

plt.plot(range(12))

plt.subplot(212, facecolor='y') # creates 2nd subplot with yellow background

plt.plot(range(12))

11. Matplotlib – Multiplots

Matplotlib

 28

The above line of code generates the following output:

Matplotlib

 29

The add_subplot() function of the figure class will not overwrite the existing plot:

import matplotlib.pyplot as plt

fig=plt.figure()

ax1=fig.add_subplot(111)

ax1.plot([1,2,3])

ax2=fig.add_subplot(221, facecolor='y')

ax2.plot([1,2,3])

When the above line of code is executed, it generates the following output:

Matplotlib

 30

You can add an insert plot in the same figure by adding another axes object in the same

figure canvas.

import matplotlib.pyplot as plt

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

fig=plt.figure()

axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes

axes2 = fig.add_axes([0.55, 0.55, 0.3, 0.3]) # inset axes

y=np.sin(x)

axes1.plot(x, y, 'b')

axes2.plot(x,np.cos(x),'r')

axes1.set_title('sine')

axes2.set_title("cosine")

plt.show()

Upon execution of the above line of code, the following output is generated:

Matplotlib

 31

Matplotlib’spyplot API has a convenience function called subplots() which acts as a utility

wrapper and helps in creating common layouts of subplots, including the enclosing figure

object, in a single call.

Plt.subplots(nrows, ncols)

The two integer arguments to this function specify the number of rows and columns of the

subplot grid. The function returns a figure object and a tuple containing axes objects equal

to nrows*ncols. Each axes object is accessible by its index. Here we create a subplot of 2

rows by 2 columns and display 4 different plots in each subplot.

import matplotlib.pyplot as plt

fig,a= plt.subplots(2,2)

import numpy as np

x=np.arange(1,5)

a[0][0].plot(x,x*x)

a[0][0].set_title('square')

a[0][1].plot(x,np.sqrt(x))

a[0][1].set_title('square root')

a[1][0].plot(x,np.exp(x))

a[1][0].set_title('exp')

a[1][1].plot(x,np.log10(x))

a[1][1].set_title('log')

plt.show()

12. Matplotlib – Subplots() Function

Matplotlib

 32

The above line of code generates the following output:

Matplotlib

 33

This function gives more flexibility in creating an axes object at a specific location of the

grid. It also allows the axes object to be spanned across multiple rows or columns.

Plt.subplot2grid(shape, location, rowspan, colspan)

In the following example, a 3X3 grid of the figure object is filled with axes objects of

varying sizes in row and column spans, each showing a different plot.

import matplotlib.pyplot as plt

a1= plt.subplot2grid((3,3),(0,0),colspan=2)

a2=plt.subplot2grid((3,3),(0,2), rowspan=3)

a3=plt.subplot2grid((3,3),(1,0),rowspan=2, colspan=2)

import numpy as np

x=np.arange(1,10)

a2.plot(x, x*x)

a2.set_title('square')

a1.plot(x, np.exp(x))

a1.set_title('exp')

a3.plot(x, np.log(x))

a3.set_title('log')

plt.tight_layout()

plt.show()

13. Matplotlib – Subplot2grid() function

Matplotlib

 34

Upon execution of the above line code, the following output is generated:

Matplotlib

 35

The grid() function of axes object sets visibility of grid inside the figure to on or off. You

can also display major / minor (or both) ticks of the grid. Additionally color, linestyle and

linewidth properties can be set in the grid() function.

import matplotlib.pyplot as plt

import numpy as np

fig, axes = plt.subplots(1,3, figsize=(12,4))

x=np.arange(1,11)

axes[0].plot(x, x**3, 'g',lw=2)

axes[0].grid(True)

axes[0].set_title('default grid')

axes[1].plot(x, np.exp(x), 'r')

axes[1].grid(color='b', ls='-.', lw=0.25)

axes[1].set_title('custom grid')

axes[2].plot(x,x)

axes[2].set_title('no grid')

fig.tight_layout()

plt.show()

14. Matplotlib – Grids

Matplotlib

 36

Sometimes, one or a few points are much larger than the bulk of data. In such a case, the

scale of an axis needs to be set as logarithmic rather than the normal scale. This is the

Logarithmic scale. In Matplotlib, it is possible by setting xscale or vscale property of axes

object to ‘log’.

It is also required sometimes to show some additional distance between axis numbers and

axis label. The labelpad property of either axis (x or y or both) can be set to the desired

value.

Both the above features are demonstrated with the help of the following example. The

subplot on the right has a logarithmic scale and one on left has its x axis having label at

more distance.

import matplotlib.pyplot as plt

import numpy as np

fig, axes = plt.subplots(1, 2, figsize=(10,4))

x=np.arange(1,5)

axes[0].plot(x, np.exp(x))

axes[0].plot(x,x**2)

axes[0].set_title("Normal scale")

axes[1].plot (x, np.exp(x))

axes[1].plot(x, x**2)

axes[1].set_yscale("log")

axes[1].set_title("Logarithmic scale (y)")

axes[0].set_xlabel("x axis")

axes[0].set_ylabel("y axis")

axes[0].xaxis.labelpad = 10

axes[1].set_xlabel("x axis")

axes[1].set_ylabel("y axis")

plt.show()

15. Matplotlib – Formatting Axes

Matplotlib

 37

Axis spines are the lines connecting axis tick marks demarcating boundaries of plot area.

The axes object has spines located at top, bottom, left and right.

Matplotlib

 38

Each spine can be formatted by specifying color and width. Any edge can be made invisible

if its color is set to none.

import matplotlib.pyplot as plt

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.spines['bottom'].set_color('blue')

ax.spines['left'].set_color('red')

ax.spines['left'].set_linewidth(2)

ax.spines['right'].set_color(None)

ax.spines['top'].set_color(None)

ax.plot([1,2,3,4,5])

plt.show()

Matplotlib

 39

Matplotlib automatically arrives at the minimum and maximum values of variables to be

displayed along x, y (and z axis in case of 3D plot) axes of a plot. However, it is possible

to set the limits explicitly by using set_xlim() and set_ylim() functions.

In the following plot, the autoscaled limits of x and y axes are shown:

import matplotlib.pyplot as plt

fig=plt.figure()

a1=fig.add_axes([0,0,1,1])

import numpy as np

x=np.arange(1,10)

a1.plot(x, np.exp(x))

a1.set_title('exp')

plt.show()

16. Matplotlib – Setting Limits

Matplotlib

 40

Now we format the limits on x axis to (0 to 10) and y axis (0 to 10000):

import matplotlib.pyplot as plt

fig=plt.figure()

a1=fig.add_axes([0,0,1,1])

import numpy as np

x=np.arange(1,10)

a1.plot(x, np.exp(x),'r')

a1.set_title('exp')

a1.set_ylim(0,10000)

a1.set_xlim(0,10)

plt.show()

Matplotlib

 41

Ticks are the markers denoting data points on axes. Matplotlib has so far - in all our

previous examples - automatically taken over the task of spacing points on the

axis.Matplotlib's default tick locators and formatters are designed to be generally sufficient

in many common situations. Position and labels of ticks can be explicitly mentioned to suit

specific requirements.

The xticks() and yticks() function takes a list object as argument. The elements in the

list denote the positions on corresponding action where ticks will be displayed.

ax.set_xticks([2,4,6,8,10])

This method will mark the data points at the given positions with ticks.

Similarly, labels corresponding to tick marks can be set by set_xlabels() and

set_ylabels() functions respectively.

ax.set_xlabels([‘two’, ‘four’,’six’, ‘eight’, ‘ten’])

This will display the text labels below the markers on the x axis.

Following example demonstrates the use of ticks and labels.

import matplotlib.pyplot as plt

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

fig=plt.figure()

ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes

y=np.sin(x)

ax.plot(x, y)

ax.set_xlabel(‘angle’)

ax.set_title('sine')

ax.set_xticks([0,2,4,6])

ax.set_xticklabels(['zero','two','four','six'])

ax.set_yticks([-1,0,1])

plt.show()

17. Matplotlib – Setting Ticks and Tick Labels

Matplotlib

 42

Matplotlib

 43

It is considered useful to have dual x or y axes in a figure. Moreso, when plotting curves

with different units together. Matplotlib supports this with the twinxand twiny functions.

In the following example, the plot has dual y axes, one showing exp(x) and the other

showing log(x):

import matplotlib.pyplot as plt

import numpy as np

fig=plt.figure()

a1=fig.add_axes([0,0,1,1])

x=np.arange(1,11)

a1.plot(x,np.exp(x))

a1.set_ylabel('exp')

a2=a1.twinx()

a2.plot(x, np.log(x),'ro-')

a2.set_ylabel('log')

fig.legend(labels=('exp','log'),loc='upper left')

plt.show()

18. Matplotlib – Twin Axes

Matplotlib

 44

A bar chart or bar graph is a chart or graph that presents categorical data with rectangular

bars with heights or lengths proportional to the values that they represent. The bars can

be plotted vertically or horizontally.

A bar graph shows comparisons among discrete categories. One axis of the chart shows

the specific categories being compared, and the other axis represents a measured value.

Matplotlib API provides the bar() function that can be used in the MATLAB style use as

well as object oriented API. The signature of bar() function to be used with axes object is

as follows:

ax.bar(x, height, width, bottom, align)

The function makes a bar plot with the bound rectangle of size (x −width=2; x + width=2;

bottom; bottom + height).

The parameters to the function are:

x sequence of scalars representing the x coordinates of the bars. align

controls if x is the bar center (default) or left edge.

height scalar or sequence of scalars representing the height(s) of the bars

width scalar or array-like, optional. the width(s) of the bars default 0.8

bottom scalar or array-like, optional. the y coordinate(s) of the bars default

None

align {‘center’, ‘edge’}, optional, default ‘center’

The function returns a Matplotlib container object with all bars.

Following is a simple example of the Matplotlib bar plot. It shows the number of students

enrolled for various courses offered at an institute.

import matplotlib.pyplot as plt

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

langs=['C', 'C++', 'Java', 'Python', 'PHP']

students=[23,17,35,29,12]

ax.bar(langs,students)

plt.show()

19. Matplotlib – Bar Plot

Matplotlib

 45

When comparing several quantities and when changing one variable, we might want a bar

chart where we have bars of one color for one quantity value.

We can plot multiple bar charts by playing with the thickness and the positions of the bars.

The data variable contains three series of four values. The following script will show three

bar charts of four bars. The bars will have a thickness of 0.25 units. Each bar chart will be

shifted 0.25 units from the previous one. The data object is a multidict containing number

of students passed in three branches of an engineering college over the last four years.

import numpy as np

import matplotlib.pyplot as plt

data = [[30, 25, 50, 20],

 [40, 23, 51, 17],

 [35, 22, 45, 19]]

X = np.arange(4)

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.bar(X + 0.00, data[0], color = 'b', width = 0.25)

ax.bar(X + 0.25, data[1], color = 'g', width = 0.25)

ax.bar(X + 0.50, data[2], color = 'r', width = 0.25)

Matplotlib

 46

ax.set_xticks([0.25,1.25,2.25,3.25])

ax.set_xticklabels([2015,2016,2017,2018])

ax.legend(labels=['CS','IT','E&TC'])

plt.show()

The stacked bar chart stacks bars that represent different groups on top of each other.

The height of the resulting bar shows the combined result of the groups.

The optional bottom parameter of the pyplot.bar() function allows you to specify a

starting value for a bar. Instead of running from zero to a value, it will go from the bottom

to the value. The first call to pyplot.bar() plots the blue bars. The second call to

pyplot.bar() plots the red bars, with the bottom of the blue bars being at the top of the

red bars.

import numpy as np

import matplotlib.pyplot as plt

N = 5

menMeans = (20, 35, 30, 35, 27)

womenMeans = (25, 32, 34, 20, 25)

ind = np.arange(N) # the x locations for the groups

width = 0.35

Matplotlib

 47

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.bar(ind, menMeans, width, color='r')

ax.bar(ind, womenMeans, width,bottom=menMeans, color='b')

ax.set_ylabel('Scores')

ax.set_title('Scores by group and gender')

ax.set_xticks(ind, ('G1', 'G2', 'G3', 'G4', 'G5'))

ax.set_yticks(np.arange(0, 81, 10))

ax.legend(labels=['Men', 'Women'])

plt.show()

Matplotlib

 48

A histogram is an accurate representation of the distribution of numerical data. It is an

estimate of the probability distribution of a continuous variable. It is a kind of bar graph.

To construct a histogram, follow these steps:

 Bin the range of values.

 Divide the entire range of values into a series of intervals.

 Count how many values fall into each interval.

The bins are usually specified as consecutive, non-overlapping intervals of a variable.

The matplotlib.pyplot.hist() function plots a histogram. It computes and draws the

histogram of x.

Parameters

The following table lists down the parameters for a histogram:

x array or sequence of arrays

bins integer or sequence or ‘auto’, optional

optional parameters

range The lower and upper range of the bins.

density If True, the first element of the return tuple will be the counts

normalized to form a probability density

cumulative If True, then a histogram is computed where each bin gives the

counts in that bin plus all bins for smaller values.

histtype The type of histogram to draw. Default is ‘bar’

 ‘bar’ is a traditional bar-type histogram. If multiple data are

given the bars are arranged side by side.

 ‘barstacked’ is a bar-type histogram where multiple data are

stacked on top of each other.

 ‘step’ generates a lineplot that is by default unfilled.

 ‘stepfilled’ generates a lineplot that is by default filled.

20. Matplotlib – Histogram

Matplotlib

 49

Following example plots a histogram of marks obtained by students in a class. Four bins,

0-25, 26-50, 51-75, and 76-100 are defined. The Histogram shows number of students

falling in this range.

from matplotlib import pyplot as plt

import numpy as np

fig,ax=plt.subplots(1,1)

a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])

ax.hist(a, bins = [0,25,50,75,100])

ax.set_title("histogram of result")

ax.set_xticks([0,25,50,75,100])

ax.set_xlabel('marks')

ax.set_ylabel('no. of students')

plt.show()

The plot appears as shown below:

Matplotlib

 50

A Pie Chart can only display one series of data. Pie charts show the size of items (called

wedge) in one data series, proportional to the sum of the items. The data points in a pie

chart are shown as a percentage of the whole pie.

Matplotlib API has a pie() function that generates a pie diagram representing data in an

array. The fractional area of each wedge is given by x/sum(x). If sum(x)< 1, then the

values of x give the fractional area directly and the array will not be normalized.

Theresulting pie will have an empty wedge of size 1 - sum(x).

The pie chart looks best if the figure and axes are square, or the Axes aspect is equal.

Parameters

Following table lists down the parameters foe a pie chart:

x array-like. The wedge sizes.

labels list. A sequence of strings providing the labels for each wedge

Colors A sequence of matplotlibcolorargs through which the pie chart will

cycle. If None, will use the colors in the currently active cycle.

Autopct string, used to label the wedges with their numeric value. The label will

be placed inside the wedge. The format string will be fmt%pct.

Following code uses the pie() function to display the pie chart of the list of students

enrolled for various computer language courses. The proportionate percentage is displayed

inside the respective wedge with the help of autopct parameter which is set to %1.2f%.

from matplotlib import pyplot as plt

import numpy as np

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.axis('equal')

langs=['C', 'C++', 'Java', 'Python', 'PHP']

students=[23,17,35,29,12]

ax.pie(students, labels=langs,autopct='%1.2f%%')

plt.show()

21. Matplotlib – Pie Chart

Matplotlib

 51

Matplotlib

 52

Scatter plots are used to plot data points on horizontal and vertical axis in the attempt to

show how much one variable is affected by another. Each row in the data table is

represented by a marker the position depends on its values in the columns set on the X

and Y axes. A third variable can be set to correspond to the color or size of the markers,

thus adding yet another dimension to the plot.

The script below plots a scatter diagram of grades range vs grades of boys and girls in two

different colors.

import matplotlib.pyplot as plt

girls_grades = [89, 90, 70, 89, 100, 80, 90, 100, 80, 34]

boys_grades = [30, 29, 49, 48, 100, 48, 38, 45, 20, 30]

grades_range = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.scatter(grades_range, girls_grades, color='r')

ax.scatter(grades_range, boys_grades, color='b')

ax.set_xlabel('Grades Range')

ax.set_ylabel('Grades Scored')

ax.set_title('scatter plot')

plt.show()

22. Matplotlib – Scatter Plot

Matplotlib

 53

Matplotlib

 54

Contour plots (sometimes called Level Plots) are a way to show a three-dimensional

surface on a two-dimensional plane. It graphs two predictor variables X Y on the y-axis

and a response variable Z as contours. These contours are sometimes called the z-slices

or the iso-response values.

A contour plot is appropriate if you want to see how alue Z changes as a function of two

inputs X and Y, such that Z = f(X,Y). A contour line or isoline of a function of two variables

is a curve along which the function has a constant value.

The independent variables x and y are usually restricted to a regular grid called meshgrid.

The numpy.meshgrid creates a rectangular grid out of an array of x values and an array

of y values.

Matplotlib API contains contour() and contourf() functions that draw contour lines and

filled contours, respectively. Both functions need three parameters x,y and z.

import numpy as np

import matplotlib.pyplot as plt

xlist = np.linspace(-3.0, 3.0, 100)

ylist = np.linspace(-3.0, 3.0, 100)

X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(X**2 + Y**2)

fig,ax=plt.subplots(1,1)

cp = ax.contourf(X, Y, Z)

fig.colorbar(cp) # Add a colorbar to a plot

ax.set_title('Filled Contours Plot')

#ax.set_xlabel('x (cm)')

ax.set_ylabel('y (cm)')

plt.show()

23. Matplotlib – Contour Plot

Matplotlib

 55

Matplotlib

 56

A quiver plot displays the velocity vectors as arrows with components (u,v) at the

points (x,y).

quiver(x,y,u,v)

The above command plots vectors as arrows at the coordinates specified in each

corresponding pair of elements in x and y.

Parameters

The following table lists down the different parameters for the Quiver plot:

x 1D or 2D array, sequence. The x coordinates of the arrow locations

y 1D or 2D array, sequence. The y coordinates of the arrow locations

u 1D or 2D array, sequence. The x components of the arrow vectors

v 1D or 2D array, sequence. The y components of the arrow vectors

c 1D or 2D array, sequence. The arrow colors

The following code draws a simple quiver plot:

import matplotlib.pyplot as plt

import numpy as np

x,y = np.meshgrid(np.arange(-2, 2, .2), np.arange(-2, 2, .25))

z = x*np.exp(-x**2 - y**2)

v, u = np.gradient(z, .2, .2)

fig, ax = plt.subplots()

q = ax.quiver(x,y,u,v)

plt.show()

24. Matplotlib – Quiver Plot

Matplotlib

 57

Matplotlib

 58

A box plot which is also known as a whisker plot displays a summary of a set of data

containing the minimum, first quartile, median, third quartile, and maximum. In a box

plot, we draw a box from the first quartile to the third quartile. A vertical line goes through

the box at the median. The whiskers go from each quartile to the minimum or maximum.

Let us create the data for the boxplots. We use the numpy.random.normal() function

to create the fake data. It takes three arguments, mean and standard deviation of the

normal distribution, and the number of values desired.

np.random.seed(10)

collectn_1 = np.random.normal(100, 10, 200)

collectn_2 = np.random.normal(80, 30, 200)

collectn_3 = np.random.normal(90, 20, 200)

collectn_4 = np.random.normal(70, 25, 200)

The list of arrays that we created above is the only required input for creating the boxplot.

Using the data_to_plot line of code, we can create the boxplot with the following code:

fig = plt.figure()

Create an axes instance

ax = fig.add_axes([0,0,1,1])

Create the boxplot

bp = ax.boxplot(data_to_plot)

plt.show()

25. Matplotlib – Box Plot

Matplotlib

 59

The above line of code will generate the following output:

Matplotlib

 60

Violin plots are similar to box plots, except that they also show the probability density of

the data at different values. These plots include a marker for the median of the data and

a box indicating the interquartile range, as in the standard box plots. Overlaid on this box

plot is a kernel density estimation. Like box plots, violin plots are used to represent

comparison of a variable distribution (or sample distribution) across different "categories".

A violin plot is more informative than a plain box plot. In fact while a box plot only shows

summary statistics such as mean/median and interquartile ranges, the violin plot shows

the full distribution of the data.

import matplotlib.pyplot as plt

np.random.seed(10)

collectn_1 = np.random.normal(100, 10, 200)

collectn_2 = np.random.normal(80, 30, 200)

collectn_3 = np.random.normal(90, 20, 200)

collectn_4 = np.random.normal(70, 25, 200)

combine these different collections into a list

data_to_plot = [collectn_1, collectn_2, collectn_3, collectn_4]

Create a figure instance

fig = plt.figure()

Create an axes instance

ax = fig.add_axes([0,0,1,1])

Create the boxplot

bp = ax.violinplot(data_to_plot)

plt.show()

26. Matplotlib – Violin Plot

Matplotlib

 61

Matplotlib

 62

Even though Matplotlib was initially designed with only two-dimensional plotting in mind,

some three-dimensional plotting utilities were built on top of Matplotlib's two-dimensional

display in later versions, to provide a set of tools for three-dimensional data visualization.

Three-dimensional plots are enabled by importing the mplot3d toolkit, included with the

Matplotlib package.

A three-dimensional axes can be created by passing the keyword projection='3d' to any

of the normal axes creation routines.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

fig = plt.figure()

ax = plt.axes(projection='3d')

z = np.linspace(0, 1, 100)

x = z * np.sin(20 * z)

y = z * np.cos(20 * z)

ax.plot3D(x, y, z, 'gray')

ax.set_title('3D line plot')

plt.show()

We can now plot a variety of three-dimensional plot types. The most basic three-

dimensional plot is a 3D line plot created from sets of (x, y, z) triples. This can be created

using the ax.plot3D function.

27. Matplotlib – Three-dimensional Plotting

Matplotlib

 63

Matplotlib

 64

3D scatter plot is generated by using the ax.scatter3D function.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

fig = plt.figure()

ax = plt.axes(projection='3d')

z = np.linspace(0, 1, 100)

x = z * np.sin(20 * z)

y = z * np.cos(20 * z)

c = x + y

ax.scatter(x, y, z, c=c)

ax.set_title('3d Scatter plot')

plt.show()

Matplotlib

 65

The ax.contour3D() function creates three-dimensional contour plot. It requires all the

input data to be in the form of two-dimensional regular grids, with the Z-data evaluated

at each point. Here, we will show a three-dimensional contour diagram of a three-

dimensional sinusoidal function.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

def f(x, y):

 return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 30)

y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.contour3D(X, Y, Z, 50, cmap='binary')

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_zlabel('z')

ax.set_title('3D contour')

plt.show()

28. Matplotlib – 3D Contour Plot

Matplotlib

 66

Matplotlib

 67

Wireframe plot takes a grid of values and projects it onto the specified three-dimensional

surface, and can make the resulting three-dimensional forms quite easy to visualize. The

plot_wireframe() function is used for the purpose:

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

def f(x, y):

 return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 30)

y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.plot_wireframe(X, Y, Z, color='black')

ax.set_title('wireframe')

plt.show()

29. Matplotlib – 3D Wireframe plot

Matplotlib

 68

The above line of code will generate the following output:

Matplotlib

 69

Surface plot shows a functional relationship between a designated dependent variable (Y),

and two independent variables (X and Z). The plot is a companion plot to the contour plot.

A surface plot is like a wireframe plot, but each face of the wireframe is a filled polygon.

This can aid perception of the topology of the surface being visualized. The

plot_surface() function x,y and z as arguments.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

x = np.outer(np.linspace(-2, 2, 30), np.ones(30))

y = x.copy().T # transpose

z = np.cos(x ** 2 + y ** 2)

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.plot_surface(x, y, z,cmap='viridis', edgecolor='none')

ax.set_title('Surface plot')

plt.show()

30. Matplotlib – 3D Surface plot

Matplotlib

 70

The above line of code will generate the following output:

Matplotlib

 71

Matplotlib has extensive text support, including support for mathematical expressions,

TrueType support for raster and vector outputs, newline separated text with arbitrary

rotations, and unicode support. Matplotlib includes its own matplotlib.font_manager which

implements a cross platform, W3C compliant font finding algorithm.

The user has a great deal of control over text properties (font size, font weight, text

location and color, etc.). Matplotlib implements a large number of TeX math symbols and

commands.

The following list of commands are used to create text in the Pyplot interface:

text Add text at an arbitrary location of the Axes.

annotate
Add an annotation, with an optional arrow, at an arbitrary location of

theAxes.

xlabel Add a label to the Axes’s x-axis.

ylabel Add a label to the Axes’s y-axis.

title Add a title to the Axes.

figtext Add text at an arbitrary location of the Figure.

suptitle Add a title to the Figure.

All of these functions create and return a matplotlib.text.Text() instance.

Following scripts demonstrate the use of some of the above functions:

import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])

ax.set_title('axes title')

ax.set_xlabel('xlabel')

ax.set_ylabel('ylabel')

ax.text(3, 8, 'boxed italics text in data coords', style='italic',

bbox={'facecolor': 'red'})

ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

31. Matplotlib – Working With Text

Matplotlib

 72

ax.text(4, 0.05, 'colored text in axes coords',

verticalalignment='bottom', color='green', fontsize=15)

ax.plot([2], [1], 'o')

ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),

arrowprops=dict(facecolor='black', shrink=0.05))

ax.axis([0, 10, 0, 10])

plt.show()

The above line of code will generate the following output:

Matplotlib

 73

You can use a subset TeXmarkup in any Matplotlib text string by placing it inside a pair of

dollar signs ($).

math text

plt.title(r'$\alpha > \beta$')

To make subscripts and superscripts, use the '_' and '^' symbols:

r'$\alpha_i> \beta_i$'

import numpy as np

import matplotlib.pyplot as plt

t = np.arange(0.0, 2.0, 0.01)

s = np.sin(2*np.pi*t)

plt.plot(t,s)

plt.title(r'$\alpha_i> \beta_i$', fontsize=20)

plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$', fontsize=20)

plt.text(0.1, -0.5, r'$\sqrt{2}$', fontsize=10)

plt.xlabel('time (s)')

plt.ylabel('volts (mV)')

plt.show()

32. Matplotlib – Mathematical Expressions

Matplotlib

 74

The above line of code will generate the following output:

Matplotlib

 75

The image module in Matplotlib package provides functionalities required for loading,

rescaling and displaying image.

Loading image data is supported by the Pillow library. Natively, Matplotlib only supports

PNG images. The commands shown below fall back on Pillow if the native read fails.

The image used in this example is a PNG file, but keep that Pillow requirement in mind for

your own data. The imread() function is used to read image data in an ndarray object

of float32 dtype.

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import numpy as np

img=mpimg.imread('mtplogo.png')

Assuming that following image named as mtplogo.png is present in the current working

directory.

Any array containing image data can be saved to a disk file by executing the imsave()

function. Here a vertically flipped version of the original png file is saved by giving origin

parameter as lower.

plt.imsave("logo.png", img, cmap='gray', origin='lower')

The new image appears as below if opened in any image viewer.

33. Matplotlib – Working with Images

Matplotlib

 76

To draw the image on Matplotlib viewer, execute the imshow() function.

imgplot = plt.imshow(img)

Matplotlib

 77

The matplotlib package is built on top of a transformation framework to easily move

between coordinate systems. Four coordinate systems can be used. The systems are

described in brief in the table given below:

Coordinate
Transformation

Object
Description

Data ax.transData
The userland data coordinate system. controlled by

the xlim and ylim

Axes ax.transAxes
The coordinate system of the Axes. (0,0) is bottom left

and (1,1) is top right of the axes.

Figure fig.transFigure
The coordinate system of the Figure. (0,0) is bottom

left and (1,1) is top right of the figure.

display None

This is the pixel coordinate system of the display. (0,0)

is the bottom left and (width, height) is the top right

of display in pixels.

 Alternatively,

the(matplotlib.transforms.IdentityTransform()) may

be used instead of None.

Consider the following example:

axes.text(x,y,"my label")

The text is placed at the theoretical position of a data point (x,y). Thus we would speak of

"data coords".

Using other transformation objects, placement can be controlled. For example, if the above

test is to be placed in the centre of axes coordinate system, execute the following line of

code:

axes.text(0.5, 0.5, "middle of graph", transform=axes.transAxes)

These transformations can be used for any kind of Matplotlib objects. The default

transformation for ax.text is ax.transData and the default transformation for fig.text is

fig.transFigure.

The axes coordinate system is extremely useful when placing text in your axes. You might

often want a text bubble in a fixed location; for example, on the upper left of the axes

pane and have that location remain fixed when you pan or zoom.

34. Matplotlib – Transforms

