
#_ the Jupyter Notebook Cheat Sheet
1. Keyboard Shortcuts:

● General:
○ Shift + Enter: Run the current cell.
○ Alt + Enter: Run current cell and insert a new one below.
○ Ctrl + S: Save the notebook.

● Cell Editing:
○ Enter: Edit a cell.
○ Esc: Exit cell editing.
○ A: Insert cell above.
○ B: Insert cell below.
○ D, D: Delete current cell.
○ Z: Undo cell deletion.
○ C: Copy cell.
○ X: Cut cell.
○ V: Paste cell below.
○ Shift + V: Paste cell above.
○ Shift + M: Merge multiple selected cells.
○ I, I: Interrupt kernel.
○ 0, 0: Restart kernel.

● Cell Type:
○ Y: Change to Code.
○ M: Change to Markdown.
○ R: Change to Raw.

● Navigation:
○ Ctrl + Shift + -: Split cell at cursor.
○ Shift + Space: Scroll notebook up.
○ Space: Scroll notebook down.

2. Markdown Basics:

● Headers: # for H1, ## for H2, etc.
● Bold Text: **text** or __text__

By: Waleed Mousa

● Italic Text: *text* or _text_

● Hyperlink: [Link Text](URL)

● Ordered List: Starting lines with numbers.
● Unordered List: Using * or - followed by a space.
● Code in Markdown: Enclosed with `

● Block of Code: Enclosed with triple backticks ```

3. Magic Commands:

● %run: Execute Python script.
● %load: Load Python script into cell.
● %time: Time execution of a statement.
● %timeit: Time a statement with multiple runs.
● %who: List variables in namespace.
● %history: Show command input history.
● %pwd: Current directory.
● %ls: List directory content.
● %matplotlib inline: Displays Matplotlib plot outputs inline within

the frontends.
● %cd: Change the current working directory.

4. Tips & Tricks:

● Shift + Tab: Tool-tip with function signature and docstring.
● ? after a function: Help for that function.
● !: Execute system shell commands.
● %%bash: Run cell in Bash mode.
● {}: Embed variable in shell command, e.g., !echo {variable_name}

● Tab Completion: Tab to autocomplete variables, functions, etc.
● Function Docstrings: Shift + Tab on a function name to see its

docstring.
● Multicursor support: Holding Alt and dragging the mouse.

By: Waleed Mousa

5. Performance:

● Profiler: Use %prun to see how time is spent in a function.
● Debugger: Use %debug after an exception to step into the Python

debugger.
● Memory: Use %memit (needs the memory_profiler extension) to

measure memory use in a cell.

6. Display & Widgets:

● %matplotlib inline: Display plots in the notebook.
● from IPython.display import display, Image, SVG, Math,

YouTubeVideo: Display various formats in your notebook.
● import ipywidgets as widgets: Create interactive widgets.

7. Jupyter Ecosystem:

● JupyterLab: Advanced interface with more features.
● JupyterHub: Multi-user Jupyter for teams.
● Voilà: Turn notebooks into standalone web apps.
● Binder: Share live, interactive versions of your notebooks.

8. Extensions & Widgets:

● Jupyter-contrib: Collection of extensions.
● Jupyter-widgets: Provides interactive widgets for the notebook.
● Qgrid: Widget for manipulating DataFrames.
● Rise: Turn Jupyter notebooks into slideshows.
● !pip install jupyterthemes: To customize or theme your notebooks.
● !jt -l: List available themes.
● !jt -t THEME_NAME: Set a theme.

By: Waleed Mousa

9. Plotting & Visualization:

● Seaborn: Advanced statistical plots.
● Plotly: For interactive plots.
● Bokeh: Another interactive plotting library.
● %matplotlib inline: For inline display of plots.
● import matplotlib.pyplot as plt: Standard way to import the

plotting library.
● plt.plot(x, y): Plot y versus x as lines.
● plt.xlabel('Name'): Label x-axis.
● plt.ylabel('Name'): Label y-axis.
● plt.title('Title'): Set a title.

10. Exporting & Conversion:

● To HTML: Exporting the notebook as an HTML file.
● To PDF: Exporting the notebook as a PDF.
● To Markdown: Conversion to a markdown file.
● To Python (.py): Converts the notebook to a standard Python

script.
● Jupyter nbconvert: Command-line tool to convert notebooks.
● jupyter nbconvert --to FORMAT notebook_name.ipynb: Convert notebook

to different formats (like HTML, PDF, Slides).
● !jupyter nbconvert --to pdf MyNotebook.ipynb: Convert notebook to

PDF directly from a cell.

11. Advanced Features:

● Interactive Outputs: Widgets and interactive plots.
● Profiling Code: Using %prun for performance profiling.
● LaTeX in Markdown: For displaying mathematical symbols and

equations.
● Big Data Integration: Using Dask or Vaex for large datasets.
● Git Integration: Integrating with Git for version control.

By: Waleed Mousa

12. Troubleshooting & Debugging:

● Clear Outputs: Clears the output display.
● Check For Updates: Regularly update for new features and security

patches.
● Debugger: %debug magic command after an exception is raised.
● Logging: Integrating Python logging module.

13. Extensions for Collaboration:

● JupyterHub: Multi-user version of the notebook.
● Binder: Turns notebooks into interactive web apps.
● Google Colab: Google's free cloud service based on Jupyter.
● nbdime: Tool for diffing and merging notebooks.

14. Security:

● Token: Secure way Jupyter ensures browser-to-server communication.
● SSL: Setting up SSL for encrypted communication.
● Server Password: Setting a password for the notebook server.

15. Customization & Configuration:

● Startup Files: Executing scripts upon kernel startup.
● Custom Themes: Using Jupyter themes for aesthetics.
● Extensions Configuration: Customizing and toggling extensions.
● Keyboard Shortcuts: Customizing and adding new shortcuts.

16. Integration with Other Tools:

● Pandas: For data manipulation.
● Numpy: For numerical operations.
● Scikit-learn: For machine learning.

By: Waleed Mousa

● TensorFlow and PyTorch: For deep learning.
● SQL Integration: Magic command %sql for inline SQL commands.

17. Best Practices:

● Regular Saves: To prevent data loss.
● Version Control: Using Git for tracking changes.
● Modular Code: Keeping the notebook organized.
● Comments: Adequately commenting for clarity.
● Clean Outputs Before Save: Especially if sharing notebooks.

By: Waleed Mousa

