
Top 10 common MAGIC
FUNCTIONS in python

__init__ __str__ __eq__

__repr__ __ne__ __add__

__getitem__ __len__

__del__

__setitem__

__init__: This is the constructor method for a class. It's
called when an object is instantiated and allows you
to set initial values for attributes.

def __init__(self, x):
 self.x = x

__str__: Defines a human-readable string
representation of the object, which is what you'll see
when you use the print() function.

def __str__(self):
 return f"An object with x: {self.x}"

__eq__: Allows you to use the == operator to compare
two objects of the class.

def __eq__(self, other):
 return self.x == other.x

__repr__: Defines an "official" string representation of
the object, useful for debugging. This is what you'll
see when you look at the object in a Python shell.

def __repr__(self):
 return f"MyClass(x={self.x})"

__ne__: Allows you to use the != operator to compare
two objects of the class.

def __ne__(self, other):
 return not self.__eq__(other)

__add__: Allows you to define custom behavior for the
+ operator for the class instances.

def __add__(self, other):
 return MyClass(self.x + other.x)

__getitem__: Allows you to use indexing to access
elements in the object, like obj[i].

def __getitem__(self, index):
 return self.some_list[index]

__setitem__: Allows you to use indexing to set
elements in the object, like obj[i] = x.

def __setitem__(self, index, value):
 self.some_list[index] = value

__len__: Allows you to use the len() built-in function
with the object.

def __len__(self):
 return len(self.some_list)

__del__: The destructor method for a class, called
when an object is about to be destroyed. Use it
cautiously, as Python's garbage collector usually
handles resource cleanup.

def __del__(self):
 print("Object is being deleted")

