APPLICATION OF PYTHON IN

DATA SCIENCE

DATA MANIPULATION

Python's powerful libraries like Pandas allow data scientists to efficiently clean, reshape, and explore data, making it a cornerstone for any data-driven project.

import pandas as pd

Load data from a CSV file
data = pd.read_csv('data.csv')

Perform data cleaning and filtering
cleaned_data = data.dropna()

Explore data using basic statistics
mean_age = cleaned_data['Age'].mean()
print(f"Mean Age: {mean_age}")

MACHINE LEARNING

Python's extensive libraries like Scikit-learn, TensorFlow, and Keras empower data scientists to build and deploy sophisticated machine learning models for tasks like classification, regression, and clustering.

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

Prepare data for training and testing
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2)

Initialize the logistic regression model
model = LogisticRegression()

Train the model
model.fit(X_train, y_train)

Make predictions on test data
predictions = model.predict(X_test)

sud?

DATA VISUALIZATION

With libraries like Matplotlib and Seaborn, Python enables data scientists to create stunning visualizations, making complex data easily understandable and impactful.

import matplotlib.pyplot as plt

Create a bar chart
plt.bar(categories, counts)
plt.xlabel('Categories')
plt.ylabel('Counts')
plt.title('Data Distribution')
plt.show()

NATURAL LANGUAGE PROCESSING (NLP)

Python offers libraries like NLTK and spaCy, allowing data scientists to process and analyze human language data, powering applications like sentiment analysis and language translation.

import nltk

Tokenize the text
tokens = nltk.word_tokenize(text)

Perform part-of-speech tagging
pos_tags = nltk.pos_tag(tokens)

Extract named entities
named_entities = nltk.chunk.ne_chunk(pos_tags)

BIG DATA ANALYSIS

Python can work seamlessly with big data frameworks like Apache Spark, making it an ideal language for processing and analyzing massive datasets efficiently.

from pyspark import SparkContext
from pyspark.sql import SparkSession

Create a Spark context
sc = SparkContext('local', 'BigDataAnalysis')
spark = SparkSession(sc)

Load data from a large dataset
data = spark.read.csv('big_data.csv')

Perform data transformations and analysis
result = data.groupBy('category').agg({'sales': 'sum'})

TIME SERIES ANALYSIS

Python libraries like Statsmodels and Prophet enable data scientists to perform time series forecasting, critical for financial and demand forecasting.

import statsmodels.api as sm

Prepare data for time series analysis
time_series = pd.Series(data, index=dates)

Perform time series forecasting
model = sm.tsa.ARIMA(time_series, order=(1, 1, 1))
results = model.fit()
forecast = results.forecast(steps=10)

WEB SCRAPING

Python's libraries such as Beautiful Soup and Scrapy facilitate data extraction from websites, an essential skill for gathering information from the web.

```
import requests
from bs4 import BeautifulSoup
```

```
# Send a request to the website
url = 'https://example.com'
response = requests.get(url)
```

```
# Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')
```

```
# Extract data from the website
data = soup.find('div', class_='content').text
```


DEEP LEARNING

Python's frameworks like PyTorch and TensorFlow provide a robust foundation for building and training deep neural networks, revolutionizing image recognition, language processing, and more.

import torch
import torch.nn as nn

```
# Create a simple neural network
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)
```

```
def forward(self, x):
    x = torch.relu(self.fc1(x))
    x = self.fc2(x)
    return x
```


INDREG 74 Bad message ISPEN 12 Cannot allocate o

> SHIVAM MODI @learneverythingai

LIKE THIS POST?

- Follow Me
- Share with your friends
- Check out my previous posts

www.learneverythingai.com

