

Python by Example
Learning to Program in 150 Challenges

Python is today’s fastest growing programming language. This engaging and refreshingly
different guide breaks down the skills into clear step-by-step chunks and explains the the-
ory using brief easy-to-understand language. Rather than bamboozling readers with pages
of mind-numbing technical jargon, this book includes 150 practical challenges, putting
the power in the reader’s hands. Through creating programs to solve these challenges the
reader will quickly progress from mastering the basics to confidently using subroutines,
a graphical user interface, and linking to external text, csv and SQL files. This book is
perfect for anyone who wants to learn how to program with Python. In particular, students
starting out in computer science and teachers who want to improve their confidence in
Python will find here a set of ready-made challenges for classroom use.

N I C H O L A L A C E Y is Director of Nichola Wilkin Ltd. She is a trusted source for

teaching resources, having sold thousands of resources to schools around the world. As one

of the most popular authors on TES, Nichola enjoys an extremely high review rating with

hundreds of thousands of downloads. She was a programmer before moving into corporate

training and then retraining as a teacher, and she gained a unique skill set of programming

and practical classroom experience after being promoted to head of computer science in a

private boys’ school.

PYTHON BY EXAMPLE
Learning to Program in 150 Challenges

N I C H O L A L A C E Y

Nichola Wilkin Ltd

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108716833

DOI: 10.1017/9781108591942

© Nichola Lacey 2019

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2019

Printed in Singapore by Markono Print Media Pte Ltd

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-71683-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Contents
Image Credits ... vi
Introduction ... 1
Downloading Python ... 4
Some Tips .. 6

PPart I: Learning Python

Challenges 1 - 11: The Basics ... 11
Challenges 12 - 19: If Statements ... 17
Challenges 20 - 26: Strings ... 24
Challenges 27 - 34: Maths ... 31
Challenges 35 - 44: For Loop ... 35
Challenges 45 - 51: While Loop... 40
Challenges 52 - 59: Random ... 45
Challenges 60 - 68: Turtle Graphics ... 51
Challenges 69 - 79: Tuples, Lists and Dictionaries .. 58
Challenges 80 - 87: More String Manipulation ... 67
Challenges 88 - 95: Numeric Arrays ... 72
Challenges 96 - 103: 2D Lists and Dictionaries .. 79
Challenges 105 - 110: Reading and Writing to a Text File 86
Challenges 111- 117: Reading and Writing to a .csv File .. 91
Challenges 118 - 123: Subprograms .. 99
Challenges 124 - 132: Tkinter GUI .. 110
Challenges 133 - 138: More Tkinter .. 124
Challenges 139 - 145: SQLite .. 134

Part II: Chunky Challenges

Challenge 146: Shift Code .. 150
Challenge 147: Mastermind .. 153
Challenge 148: Passwords .. 156
Challenge 149: Times Table (GUI).. 161
Challenge 150: Art Gallery .. 164

What Next? ... 169
Glossary .. 170
Index ... 182

v

Image Credits
Animal Drawings:
Pages 1, 9, 11, 31, 35, 37, 41, 45, 92, 125, 127, 138, 150, 165: HelenField/Shutterstock.com
Pages 16, 20, 94 and141(bottom): Victoria Novak/Shutterstock.com
Pages 27 and 157: Dimonika/Shutterstock.com
Pages 46, 58, 73, 93, 95, 103, 128, 135, 147, 169: mart/Shutterstock.com
Pages 59, 68, 151, 154: lynea/Shutterstock.com
Page 80: MoreVector/Shutterstock.com
All other animal drawings: Olga_Angelloz/Shutterstock.com

Other decorative icons:
MG Drachal/Shutterstock.com
Mila Petkova/Shutterstock.com
Nikolaeva/Shutterstock.com
Tiwat K/Shutterstock.com

vi

Introduction 11

Introduction
If you have ever picked up a programming manual and felt your forehead go
clammy and your eyes cross as you attempt to make sense of the long-
winded explanations, this is the guide for you.

I have been in your position, attempting to learn how to program and having to rely on the
traditional style of guides. I know from painful experience how quickly I glaze over and my
brain solidifies; after only a few pages the tedium leaves me blindly reading words without
any real notion of what they mean any more. Inevitably I give up and the whole process
makes me feel like a limp failure, gasping for breath after I surface from drowning in
technical jargon.

I hated having to read through pointless drivel and then be presented with a short program
telling me exactly what to type in and then spend the next 20 pages reading about what I
have just done and the 101 ways I could run it. I hated having no control
over trying things out for myself and I hated the way these guides would
only contain one or two challenges at the end of a chapter of theory.

I knew there had to be a better way, and thankfully there is. I wrote it and
you are presently reading it, so aren’t you lucky? This guide is refreshingly
different and helps you learn how to program with Python by using practical examples
rather than self-important explanations.

Many programmers learn through
experimentation, looking at others’ code and
working out what method is best for a given
situation. This book is a hands-on approach to
learning programming. After minimal reading
you are set a number of challenges to create the
programs. You can explore and experiment with
the programming language and look at the
example solutions to learn how to think like a
programmer. There are no chapters entitled
“the architecture of a computer”, “the theory of
programming” or any other gobbledy-gook
other authors like to waste time with. I don’t
want to baffle you with theory or blind you with
overbearing explanations that suck out your
enthusiasm for learning to program.

22 Introduction

Hopefully, you want to get stuck into creating programs, solving problems and enjoying the
sense of accomplishment that you get as you proudly look over your lines of code, knowing
that you created something that works. That is great, your eagerness is to be applauded
and I salute those who are reading this while already sitting at their computers, fingers
poised and ready to get going. If that is the case, that you already have Python open on your
screen and are itching to get going, then away you go and I’ll see you in the first chapter
called “The Basics” on page 11.

For everyone who is still with us and is feeling a little more timid, there are just a few more
things to tell you about before you take the plunge.

How to Use This Book
This book builds from very simple programs to more complex ones. If you are new to
programming or new to Python, start with “The Basics” and work through the chapters in
order.

If you are familiar with Python programming and feel confident with the
basics, the theory and logic surrounding programming, then you can just dip
in and out of the book to get help on the specifics you need.

The book is split into two sections:

PPart I
In Part I, each chapter takes you through some basic programming rules and challenges for
you to complete and includes:

� a ssimple explanation giving you pointers, which is useful if you are new to
programming in Python;

� examples of code with a short explanation, which you can use as a basis to solve the
challenges;

� a llist of challenges for you to work through that get harder as you move through them.
Each challenge should only take between a couple of minutes and 20 minutes to solve;
however, some of the more complex challenges near the end of Part I will take longer
as you build up the techniques you will be using. Don’t panic if you take longer than
this, as long as you solve the problems without too much copying from the suggested
solution, you are doing fine;

� code containing a ppossible solution for each challenge; there is often more than one
answer available, but we include just a single program as a possible solution that you
can refer to if you get stuck on a particular aspect of the code.

Introduction 33

PPart II
In Part II, you are given some larger challenges which utilize the programming skills you
learnt in Part I and allow you to consolidate and reinforce the techniques you have been
practising. In this section, you are not given the help and example code that is given in Part
I and it will take longer to solve each challenge. After each challenge, you are given one
possible answer that you may find useful if you are stuck. However, you may have found
another solution that works just as well.

Who Is This Book
For?
This book is suitable for anyone who wants to learn how
to program with Python. It is an essential tool for
teachers and students in Key Stage 3 or those studying
computer science who need help and ready-made
examples to practise programming techniques and
build confidence. It can also be used to help with a
computer science programming project resource bank,
to help pupils needing additional support or just a quick
reminder of the syntax when creating programs.

44 Downloading Python

Downloading Python
You can download Python for free from the official Python website:

wwww.python.org/downloads/

Click on the latest version (in the example above, click on the DDownload Python 3.6.2 button)
to start the installation.

The program will download an executable (.exe) file. When you run this program, you will
see an install window like the one shown below.

Click the IInstall Now option and the program will start installing Python onto your system.

Downloading Python 55

Running Python
To start Python on a Windows system, click on the WWindows icon or SStart menu and select
the IIDLE (Python version number) option as highlighted below.

66 Some Tips

Some Tips
File Location
On a Windows system, the Python folder is usually found in the C:\ drive and will be named
PPython36 (or similar) and the files will automatically be saved in the same location, unless
you save them specifically in another location.

Using Comments
Comments are a very useful tool for programmers. They serve two purposes:

� adding an explanation of how the program works;

� stopping parts of the program from working temporarily so you can run
and test other parts of the program.

The first, and original, purpose of explaining how a program works is so other programmers
can make sense of your programs in case your code needs to be altered and updated in the
future and to remind you about why you wrote particular lines of code.

In this example, comments have been added at the end of the last three lines. They are
shown in red and start with the # symbol.

In reality, you would not add comments on lines which contain obvious code as it would
clutter the screen; you would only add comments where necessary.

As Python knows to ignore anything after a # symbol, programmers soon started to use # at
the start of lines of their code to block out sections they do not want to run so they can focus
on and test others.

Some Tips 77

In this example, the # has been added to the first line of the program to
temporarily stop it from running. To bring it back into the running order
simply delete the # and the code will be reactivated.

In this guide, we have not included any comments to the programs so you have to read the
code to make sense of it. That way you will really learn how to code! If you are creating
programs as part of your coursework you should add comments to explain your
programming to the examiner.

Formatting Python
In most versions of Python IDLE it is possible to quickly add comments and indent code
using the menus. This way, if you need to block out entire areas using a comment you
simply highlight the lines and then select the Format menu and select Comment Out
Region. Similarly, if you need to indent a region (we will look at the reason for indenting
code later) then you can also easily do this with the menu.

Okay, that is all the “housekeeping” out of the way. No more procrastinating; take a deep
breath and away we go…

Part I
Learning Python

110 Challenges 1 - 11: Part I

Challenges 1 - 11: The Basics 111

Challenges 1 - 11

The Basics
Explanation
This is the shell window and is the first screen you see when you launch Python.

It is possible to write Python code straight into the shell, but as soon as
you hit [Return] at the end of a line, it will run that line of code. This may
be suitable for using Python as a quick calculator; for instance, you can
type in 3*5 at the prompt and Python will show the answer 15 on the
next line; however, this style of inputting is not useful for more complex
programs.

It is much better to start a new window, create all the code in the new window,
save your code and run it.

To create a new window in which to write your code, select File and New.
Once you enter your code in this new window you can save it and run it all in one

go. This will then run the code in the shell window.

Alternatively, Python programs can be written using
any text editor and must be saved with the file name
extension .py in order to work. These programs can
then be run from the command prompt by typing in the
full directory root and file name.

112 Challenges 1 - 11: The Basics

Running Your Program
Every time you run the code your program will need to be saved afresh in case there have
been any changes to it.

In this version of Python, you can run the program by selecting the Run menu and
selecting Run Module. Alternatively, you can press the [F5] key. If this is the first time
the program is saved, Python will prompt you to name and save the file before it will allow
the program to run.

Important Things to Note
When Writing Your
Programs
Python is case sensitive so it is important that you use the correct case, otherwise
your code will not work.

Text values need to appear in speech marks (") but numbers do
not.

When naming variables (i.e. values that you want to store
data in) you cannot use any dedicated words such as print,
input, etc. otherwise your code will not work.

When saving your files do not save them with any
dedicated words that Python already uses, such as print,
input, etc. If you do this it will not run and you will need to
rename the file before it works.

To edit a program you have saved and closed, right-click on the
file and select Edit with IDLE. If you just double-click on
the file it will only try to run it and you will not be able to edit it.

Challenges 1 - 11: The Basics 113

Example Code

num1 = 93
Set the value of a variable, if
there is not a variable already
created, it will create one. A
variable is a container for a value
(in this case the variable will be
called “num1” and store the value
93). The value stored in the variable
can change while the program is
running. The variable can be called
whatever you want (except Python
dedicated words such as print,
save, etc.) and it must start with a
letter rather than a number or
symbol and have no spaces.

answer = num1 + num2
Adds together num1 and num2 and stores the
answer in a variable called answer.

answer = num1 - num2
Subtracts num2 from num1 and stores the
answer in a variable called answer.

answer = num1 * num2
Multiplies num1 by num2 and stores the
answer in a variable called answer.

answer = num1 / num2
Divides num1 by num2 and stores the answer
in a variable called answer.

answer = num1 // num2
A whole number division (i.e. 9//4 = 2) and
stores the answer in a variable called answer.

print (“This is a message”)
Displays the message in the brackets. As the value we want displayed is a text value it
has the speech marks, which will not be displayed in the output. If you wanted to display
a numerical value or the contents of a variable, the speech marks are not needed.

print (“First line\nSecond line”)
“\n” is used as a line break.

textValue = input(“Enter a text value: ”)
Displays the question “Enter a text value: ” and stores the value the user enters in a
variable called textValue. The space after the colon allows a space to be added before
the user enters their answer, otherwise they appear squashed unattractively together.

print (“The answer is”, answer)
Displays the text “The answer is” and the value of the variable answer.

numValue = int(input(“Enter a number: ”))
Displays the question “Enter a number: ” and stores the value as an
integer (a whole number) in a variable called numValue Integers can be
used in calculations but variables stored as text cannot.

114 Challenges 1 - 11: The Basics

Challenges

001
Ask for the user’s first name and
display the output message
Hello [First Name] .

002
Ask for the user’s first name and then ask for
their surname and display the output message
Hello [First Name] [Surname].

003
Write code that will display the joke “What do you call a bear with no
teeth?” and on the next line display the answer “A gummy bear!” Try to
create it using only one line of code.

004
Ask the user to enter
two numbers. Add
them together and
display the answer as
The total is
[answer].

005
Ask the user to enter three
numbers. Add together the first
two numbers and then multiply
this total by the third. Display the
answer as The answer is
[answer].

006
Ask how many slices
of pizza the user
started with and ask
how many slices
they have eaten.
Work out how many
slices they have left
and display the
answer in a user-
friendly format.

007
Ask the user for their name and their age. Add 1 to their age
and display the output [Name] next birthday you
will be [new age].

008
Ask for the total price of the bill, then ask how
many diners there are. Divide the total bill by the
number of diners and show how much each
person must pay.

009
Write a program
that will ask for a
number of days
and then will
show how many
hours, minutes
and seconds are
in that number of
days.

011
Task the user to enter a number over 100 and then enter a number under
10 and tell them how many times the smaller number goes into the larger
number in a user-friendly format.

010
There are 2,204 pounds in a kilogram. Ask the
user to enter a weight in kilograms and convert it
to pounds.

Keep
going,

you
are

doing
well.

Challenges 1 - 11: The Basics 115

Answers 0001

002

003

004

005

006

007

008

116 Challenges 1 - 11: The Basics

0009

010

011

How did you do?
Don’t forget, the

skills you are
learning now will

help you later.

Challenges 12 - 19: If Statements 117

Challenges 12 - 19

If Statements
Explanation
If statements allow your program to make a decision and change the route that is
taken through the program.

Below is how the if statement for this flow chart would look in Python.

118 Challenges 12 - 19: If Statements

Indenting Lines of Code
Indenting is very important in Python as it shows the lines that are dependent on others, as
shown in the example on the previous page. In order to indent text you can use your [Tab]
key or you can press your [space key] five times. The [backspace] key will remove
indents.

The first line of the if statement tests a condition, and if that condition is met (i.e. the first
condition is true) then the lines of code directly below it are run. If it is not met (i.e. the first
condition is false) it will test the second condition, if there is one, and so on. Below are
examples of the different comparison and logical operators you can use in the condition
line of your if statement.

Comparison
Operators

 Logical
Operators

OOperator DDescription OOperator DDescription

== Equal to and Both conditions must be met

!= Not equal to or Either condition must be met

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Challenges 12 - 19: If Statements 119

Example Code

PPlease note: In the examples
shown, num is a variable
entered by the user that has
been stored as an integer.

if num > 10:
 print(“This is over 10”)
elif num == 10:
 print(“This is equal to 10”)
else:
 print(“This is under 10”)
If num1 is over 10, it will display the message “This is
over 10”, otherwise it will check the next condition. If
num1 is equal to 10, it will display the message “This is
equal to 10”. Otherwise, if neither of the first two
conditions have been met, it will display the message
“This is under 10”.

if num > 10:
 print(“This is over 10”)
else:
 print(“This is not over 10”)
If num1 is over 10, it will display the message “This is
over 10”, otherwise it will display the message “This is
under 10”.

if num >= 10:
 if num <= 20:
 print(“This is between 10 and 20”)
 else:
 print(“This is over 20”)
else:
 print(“This is under 10”)
If num1 is 10 or more then it will test another if statement to see if num1 is less than or
equal to 20. If it is, it will display the message “This is between 10 and 20”. If num1 is not
less than or equal to 20 then it will display the message “This is over 20”. If num1 is not
over 10, it will display the message “This is under 10”.

text = str.lower(text)
Changes the text to lower case. As Python is case sensitive, this
changes the data input by the user into lower case so it is easier to
check.

220 Challenges 12 - 19: If Statements

num = int(input(“Enter a number between 10 and 20: ”))
if num >= 10 and num <= 20:
 print(“Thank you”)
else:
 print(“Out of range”)
This uses and to test multiple conditions in the if statement. Both the conditions must
be met to produce the output “Thank you”.

num = int(input(“Enter an EVEN number between 1 and 5: ”))
if num == 2 or num == 4:
 print(“Thank you”)
else:
 print(“Incorrect”)
This uses or to test the conditions in the if statement. Just one condition must be met
to display the output “Thank you”.

Challenges 12 - 19: If Statements 221

Challenges

012
Ask for two numbers. If
the first one is larger
than the second, display
the second number first
and then the first
number, otherwise show
the first number first and
then the second.

013
Ask the user to enter a
number that is under
20. If they enter a
number that is 20 or
more, display the
message “Too high”,
otherwise display
“Thank you”.

014
Ask the user to enter a
number between 10 and 20
(inclusive). If they enter a
number within this range,
display the message “Thank
you”, otherwise display the
message “Incorrect
answer”.

015
Ask the user to enter their favourite colour. If they enter “red”, “RED” or
“Red” display the message “I like red too”, otherwise display the message
“I don’t like [colour], I prefer red”.

016
Ask the user if it is raining and convert their answer to lower case
so it doesn’t matter what case they type it in. If they answer “yes”,
ask if it is windy. If they answer “yes” to this second question,
display the answer “It is too windy for an umbrella”, otherwise
display the message “Take an umbrella”. If they did not answer yes
to the first question, display the answer “Enjoy your day”.

017
Ask the user’s age. If they
are 18 or over, display the
message “You can vote”, if
they are aged 17, display the
message “You can learn to
drive”, if they are 16, display
the message “You can buy a
lottery ticket”, if they are
under 16, display the
message “You can go Trick-
or-Treating”.

018
Ask the user to enter a number. If it is under 10,
display the message “Too low”, if their number is
between 10 and 20, display “Correct”, otherwise
display “Too high”.

019
Ask the user to enter 1, 2 or 3. If they enter a 1, display
the message “Thank you”, if they enter a 2, display
“Well done”, if they enter a 3, display “Correct”. If
they enter anything else, display “Error message”.

222 Challenges 12 - 19: If Statements

Answers 0012

013

014

015

Challenges 12 - 19: If Statements 223

0016

017

018

019

224 Challenges 20 - 26: Strings

Challenges 20 - 26

Strings
Explanation
String is the technical name for text. To define a block of code as a string, you need to
include it in either double quotes (") or single quotes ('). It doesn’t matter which you use so
long as you are consistent.

There are some characters you need to be particularly careful with when inputting them
into strings. These include:

"" ' \

That is because these symbols have special meanings in Python and it can get confusing if
you use them in a string.

If you want to use one of these symbols you need to
precede it with a backslash symbol and then Python will
know to ignore the symbol and will treat it as normal text
that is to be displayed.

Symbol How to type this into a Python
string

" \"

' \'

\ \\

Challenges 20 - 26: Strings 225

Strings and Numbers as
Variables
If you define a variable as a string, even if it only contains numbers, you cannot later use
that string as part of a calculation. If you want to use a variable that has been defined as a
string in a calculation, you will have to convert the string to a number before it can be used.

In this example, the author has asked for a number, but has not defined it as a numeric
value and when the program is run they will get the following error:

Although this error message looks scary, it is simply saying that the line
total = num + 10 isn’t working as the variable num is defined as
a string.

This problem can be solved in one of two ways. You
can either define it as a number when the variable is
being originally created, using this line:

or you can convert it to a number after it has been
created using this line:

226 Challenges 20 - 26: Strings

The same can happen with strings.

In this program, the user is asked to enter their name and a number. They want it joined
together and with strings the addition symbol is used as concatenation. When this
code is run you will get a similar error message to before:

To get around this, either don’t define the variable as a number in the first place or convert
it to a string afterwards using the line:

Multiple-Line Strings
If you want to input a string across multiple lines you can either use the line break (\n) or
you can enclose the entire thing in triple quotes. This will preserve the formatting of the
text.

Challenges 20 - 26: Strings 227

Example Code
PPlease note: In the following examples, the terms word, phrase, name, firstname and
surname are all variable names.

len(word)
Finds the length of the variable called word.

word.upper()
Changes the string into upper case.

word.lower()
Changes the string into lower case.

print(word.capitalize())
Displays the variable so only the first word
has a capital letter at the beginning and
everything else is in lower case.

word.title()
Changes a phrase so that every word
has a capital letter at the beginning
with the rest of the letters in the
word in lower case (i.e.Title Case).

text = “ This is some text. ”
print(text.strip(“ ”))
Removes extra characters (in this case spaces) from the start and end of a string.

print (“Hello world”[7:10])
Each letter is assigned an index number to
identify its position in the phrase, including
the space. Python starts counting from 0, not
1.

Therefore, in this example, it would display
the value of positions 7, 8 and 9 ,which is
“orl”.

name = firstname+surname
Joins the first name and surname together
without a space between them, known as
concatenation

228 Challenges 20 - 26: Strings

Challenges

020
Ask the user to enter
their first name and
then display the
length of their name.

021
Ask the user to enter their first name and then ask them to
enter their surname. Join them together with a space between
and display the name and the length of whole name.

022
Ask the user to enter their first name and surname in lower
case. Change the case to title case and join them together.
Display the finished result.

023
Ask the user to type in the first
line of a nursery rhyme and
display the length of the string.
Ask for a starting number and an
ending number and then display
just that section of the text
(remember Python starts
counting from 0 and not 1).

024
Ask the user to type in any word and display it in
upper case.

025
Ask the user to enter their first name. If the length
of their first name is under five characters, ask
them to enter their surname and join them
together (without a space) and display the name
in upper case. If the length of the first name is five
or more characters, display their first name in
lower case.

026
Pig Latin takes the first consonant of a word,
moves it to the end of the word and adds on an
“ay”. If a word begins with a vowel you just add
“way” to the end. For example, pig becomes igpay,
banana becomes ananabay, and aadvark becomes
aadvarkway. Create a program that will ask the
user to enter a word and change it into Pig Latin.
Make sure the new word is displayed in lower case.

Don’t forget, you can always look
back, remind yourself of some of
the earlier skills you have learnt.

You have learnt a great deal so far.

Challenges 20 - 26: Strings 229

Answers 0020

021

022

023

024

330 Challenges 20 - 26: Strings

0025

026

Challenges 27 - 34: Maths 331

Challenges 27 - 34

Maths
Explanation
Python can perform several mathematical functions, but these are only available when the
data is treated as either an integer (a whole number) or a floating-point (a
number with a decimal place). If data is stored as a string, even if it only contains numeric
characters, Python is unable to perform calculations with it (see page 24 for a fuller
explanation).

Example Code
Please note: In order to use some of the mathematical functions (math.sqrt(num)
and math.pi) you will need to import the maths
llibrary at the start of your program. You do this by
typing import math as the first line of your
program.

num=float(input(“Enter number: “))
Allows numbers with a decimal point dividing the integer and fraction part.

print(round(num,2))
Displays a number rounded to
two decimal places.

**
To the power of
(e.g. 102 is 10**2).

math.sqrt(num)
The square root of a number, but you must have the line import
math at the top of your program for this to work.

math.pi
Gives you pi (π) to 15 decimal places,
but you must have the line import
math at the top of your program for
this to work.

x // y
Whole number division (e.g.15//2 gives
the answer 7).

x % y
Finds the remainder (e.g. 15%2 gives
the answer 1).

332 Challenges 27 - 34: Maths

Challenges

027
Ask the user to enter a
number with lots of
decimal places. Multiply
this number by two and
display the answer.

028
Update program 027 so that it will display the answer to
two decimal places.

029
Ask the user to enter an integer that is over 500. Work
out the square root of that number and display it to two
decimal places. 030

Display pi (π) to five
decimal places. 031

Ask the user to enter the radius of a circle
(measurement from the centre point to the edge). Work
out the area of the circle (π*radius2).

032
Ask for the radius and the depth of a cylinder
and work out the total volume (circle
area*depth) rounded to three decimal
places.

033
Ask the user to enter two numbers.
Use whole number division to divide
the first number by the second and
also work out the remainder and
display the answer in a user-friendly
way (e.g. if they enter 7 and 2 display
“7 divided by 2 is 3 with 1
remaining”).

034
Display the following message:

If the user enters 1, then it should ask them for
the length of one of its sides and display the
area. If they select 2, it should ask for the base
and height of the triangle and display the area. If
they type in anything else, it should give them a
suitable error message.

You are
starting to
think like a

programmer.

Challenges 27 - 34: Maths 333

Answers 0027

028

029

030

031

032

033

334 Challenges 27 - 34: Maths

0034

Challenges 35 - 44: For Loop 335

Challenges 35 - 44

For Loop
Explanation
A for loop allows Python to keep repeating code a set number of times. It is sometimes
known as a counting loop because you know the number of times the loop will run
before it starts.

In this case, it starts at 1 and will keep repeating the loop
(displaying i) until it reaches 10 and then stops. This is how this
loop would look in Python

In this example, the outputs would be 1, 2, 3, 4, 5, 6, 7, 8 and 9.

When it gets to 10 the loop would stop so 10 would
not be shown in the output.

RRemember to indent the lines
of code within the for loop.

336 Challenges 35 - 44: For Loop

Example Code
The range function is often used in for loops and lists the starting number, the ending
number and can also include the steps (e.g. counting in 1s, 5s or any other value you wish).

for i in range(1,10):
 print(i)
This loop uses a variable called “i” to keep track of the number of times
the loop has been repeated. It will start i at 1 (as that is the starting
value in the range function) and repeat the loop, adding 1 to i each time
and displaying the value of i until it reaches 10 (as dictated by the range
function), where it will stop. Therefore, it will not repeat the loop a tenth
time and will only have the following output:

1, 2, 3, 4, 5, 6, 7, 8, 9

for i in range(1,10,2):
 print(i)
This range function includes a third value
which shows how much is added to i in
each loop (in this case 2). The output will
therefore be: 1, 3, 5, 7, 9

for i in range(10,1,-3):
 print(i)
This range will subtract 3 from i each
time. The output will be: 10, 7, 4

for i in word:
 print(i)
This would display each character in a
string called “word” as a separate
output (i.e. on a separate line).

Using loops is a
powerful programming
tool that you will use a

lot in the more
challenging programs.

Challenges 35 - 44: For Loop 337

Challenges

035
Ask the user to enter
their name and then
display their name
three times.

036
Alter program 035 so that it will ask the user to enter their
name and a number and then display their name that
number of times.

037
Ask the user to enter their name and display each letter in
their name on a separate line.

038
Change program
037 to also ask for a
number. Display
their name (one
letter at a time on
each line) and
repeat this for the
number of times
they entered.

039
Ask the user to enter a number between 1
and 12 and then display the times table for
that number.

040
Ask for a number below 50 and then count down from
50 to that number, making sure you show the number
they entered in the output. 041

Ask the user to enter their
name and a number. If the
number is less than 10, then
display their name that
number of times; otherwise
display the message “Too
high” three times.

042
Set a variable called total to 0. Ask the user to enter
five numbers and after each input ask them if they
want that number included. If they do, then add the
number to the total. If they do not want it included,
don’t add it to the total. After they have entered all five
numbers, display the total.

043
Ask which direction the user wants to count (up or down). If they select up, then ask
them for the top number and then count from 1 to that number. If they select down, ask
them to enter a number below 20 and then count down from 20 to that number. If they
entered something other than up or down, display the message “I don’t understand”.

044
Ask how many people the user wants to invite to a party. If they enter a number below
10, ask for the names and after each name display “[name] has been invited”. If they
enter a number which is 10 or higher, display the message “Too many people”.

338 Challenges 35 - 44: For Loop

Answers 0035

036

037

038

039

040

Challenges 35 - 44: For Loop 339

0041

042

043

044

440 Challenges 45 - 51: While Loop

Challenges 45 - 51

While Loop
Explanation

A while loop allows code to be repeated an unknown number of times
as long as a condition is being met. This may be 100 times, just the once or
even never. In a while loop the condition is checked before the code is run,
which means it could skip the loop altogether if the condition is not being
met to start with. It is important, therefore, to make sure the correct
conditions are in place to run the loop before it starts.

In Python the example for the flow chart above would look as follows:

It will keep repeating this code until the user enters anything other than “yes”.

Challenges 45 - 51: While Loop 441

Example Code

total = 0
while total < 100:
 num = int(input(“Enter a number: ”))
 total = total + num
print(“The total is”, total)

The above program will create a variable called total and store the
value as 0. It will ask the user to enter a number and will add it to
the total. It will keep repeating this as long as the total is still
below 100. When the total equals 100 or more, it will stop running
the loop and display the total.

Comparison Operators Logical Operators
OOperator DDescription OOperator DDescription

== Equal to and Both conditions must be met

!= Not equal to or Either condition must be met

> Greater than Remember: text values must appear
in speech marks and numeric values

do not.

< Less than

>= Greater than or equal to

<= Less than or equal to

442 Challenges 45 - 51: While Loop

Challenges

045
Set the total to 0 to start with. While the total is 50 or less, ask
the user to input a number. Add that number to the total and
print the message “The total is… [total]”. Stop the loop when
the total is over 50.

046
Ask the user to enter
a number. Keep
asking until they enter
a value over 5 and
then display the
message “The last
number you entered
was a [number]” and
stop the program.

047
Ask the user to enter a
number and then enter
another number. Add these
two numbers together and
then ask if they want to add
another number. If they
enter “y", ask them to enter
another number and keep
adding numbers until they
do not answer “y”. Once the
loop has stopped, display
the total.

048
Ask for the name of somebody the user wants to invite
to a party. After this, display the message “[name] has
now been invited” and add 1 to the count. Then ask if
they want to invite somebody else. Keep repeating this
until they no longer want to invite anyone else to the
party and then display how many people they have
coming to the party. 049

Create a variable called
compnum and set the value
to 50. Ask the user to enter a
number. While their guess
is not the same as the
compnum value, tell them if
their guess is too low or too
high and ask them to have
another guess. If they enter
the same value as
compnum, display the
message “Well done, you
took [count] attempts”.

050
Ask the user to enter a number between
10 and 20. If they enter a value under 10,
display the message “Too low” and ask
them to try again. If they enter a value
above 20, display the message “Too high”
and ask them to try again. Keep repeating
this until they enter a value that is
between 10 and 20 and then display the
message “Thank you”.

051
Using the song “10 green bottles”, display the lines “There are [num] green bottles
hanging on the wall, [num] green bottles hanging on the wall, and if 1 green bottle
should accidentally fall”. Then ask the question “how many green bottles will be
hanging on the wall?” If the user answers correctly, display the message “There will be
[num] green bottles hanging on the wall”. If they answer incorrectly, display the
message “No, try again” until they get it right. When the number of green bottles gets
down to 0, display the message “There are no more green bottles hanging on the wall”.

Challenges 45 - 51: While Loop 443

Answers 0045

046

047

048

049

444 Challenges 45 - 51: While Loop

0050

051

Challenges 52 - 59: Random 445

Challenges 52 - 59

Random
Explanation
Python can generate random values. In reality, the values are not
completely random as no computer can cope with that; instead it uses an
incredibly complex algorithm that makes it virtually impossible to accurately
predict its outcome so, in effect, it acts like a random function.

There are two types of random value that we will be looking at:

� Random numbers within a specified range;

� A random choice from a range of items that are input.

To use these two options, you will need to import the random library. You do
this by typing import random at the start of your program.

446 Challenges 52 - 59: Random

Example Code

import random
This must appear at
the start of your
program otherwise
the random
function will not
work.

num = random.random()
Selects a random floating-point number between 0 and 1 and
stores it in a variable called “num”. If you want to obtain a
larger number, you can multiply it as shown below:

import random
num = random.random()
num = num * 100
print(num)

num = random.randint(0,9)
Selects a random whole number
between 0 and 9 (inclusive).

num1 = random.randint(0,1000)
num2 = random.randint(0,1000)
newrand = num1/num2
print(newrand)
Creates a random floating-point number by
creating two random integers within two
large ranges (in this case between 0 and
1000) and dividing one by the other.

num = random.randrange(0,100,5)
Picks a random number between the
numbers 0 and 100 (inclusive) in steps of five,
i.e. it will only pick from 0, 5, 10, 15, 20, etc.

colour = random.choice([“red”,“black”,“green”])
Picks a random value from the options “red”, “black” or “green” and stores it as the
variable “colour”. Remember: strings need to include speech marks but numeric data
does not.

You
are

doing
great!

Challenges 52 - 59: Random 447

Challenges

052
Display a
random
integer
between
1 and 100
inclusive.

053
Display a
random
fruit from
a list of
five fruits.

054
Randomly choose either heads or tails (“h” or “t”). Ask
the user to make their choice. If their choice is the same
as the randomly selected value, display the message
“You win”, otherwise display “Bad luck”. At the end, tell
the user if the computer selected heads or tails.

055
Randomly choose a number between 1 and 5. Ask the user to pick a
number. If they guess correctly, display the message “Well done”,
otherwise tell them if they are too high or too low and ask them to pick a
second number. If they guess correctly on their second guess, display
“Correct”, otherwise display “You lose”.

056
Randomly pick a whole number between 1
and 10. Ask the user to enter a number and
keep entering numbers until they enter the
number that was randomly picked.

057
Update
program 056
so that it
tells the
user if they
are too high
or too low
before they
pick again.

058
Make a maths quiz that asks five questions by randomly
generating two whole numbers to make the question
(e.g. [num1] + [num2]). Ask the user to enter the
answer. If they get it right add a point to their score. At
the end of the quiz, tell them how many they got correct
out of five.

059
Display five colours and ask the user to pick one. If they
pick the same as the program has chosen, say “Well
done”, otherwise display a witty answer which involves
the correct colour, e.g. “I bet you are GREEN with envy”
or “You are probably feeling BLUE right now”. Ask
them to guess again; if they have still not got it right,
keep giving them the same clue and ask the user to
enter a colour until they guess it correctly.

448 Challenges 52 - 59: Random

Answers 0052

053

054

055

Challenges 52 - 59: Random 449

0056

057

058

550 Challenges 52 - 59: Random

0059

Challenges 60 - 68: Turtle Graphics 551

Challenges 60 - 68

Turtle Graphics
Explanation
It is possible to draw using a turtle in Python. By typing in commands
and using loops, you can create intricate patterns. Here is how it works.

A turtle will travel along a path that you define, leaving a pen mark behind it. As you control
the turtle, the pattern that is left is revealed. To draw the pentagon shown below you would
type in the following code.

By combining these simple shapes and using nested loops (i.e. loops inside other loops)
it is possible to create beautiful patterns very easily.

In the above pattern, one pentagon has been repeatedly drawn 10 times, rotating 36

degrees around a central point. Please note: we have highlighted one of the pentagons
to help you identify it within the pattern, but it would not usually be highlighted.

552 Challenges 60 - 68: Turtle Graphics

Example Code

import turtle
This line needs to be included
at the beginning of your
program to import the turtle
library into Python, allowing
you to use the turtle functions.

scr = turtle.Screen()
Defines the window as being
called “scr”. This means we can
use the shorthand “scr”, rather
than having to refer to the window
by its full name each time.

scr.bgcolor(“yellow”)
Sets the screen background
colour to yellow. By default, the
background colour will be
white unless it is changed.

turtle.pensize(3)
Changes the turtle pen size
(the thickness of the line that is
drawn) to 3. By default, this is 1
unless it is changed.

turtle.penup()
Removes the pen from
the page so that as the
turtle moves it does not
leave a trail behind it.

turtle.pendown()
Places the pen on the
page so that when the
turtle moves it will
leave a trail behind it.
By default, the pen is
down unless specified
otherwise.

turtle.forward(50)
Moves the turtle forward 50
steps.

turtle.left(120)
Turns the turtle 120° to
the left (counter
clockwise). turtle.right(90)

Turns the turtle 90° to
the right (clockwise).

turtle.showturtle()
Shows the turtle on the screen.
By default, the turtle is
showing unless specified
otherwise.

turtle.hideturtle()
Hides the turtle so it is not
showing on the screen.

turtle.shape(“turtle”)
Changes the shape of the turtle to look like a turtle

. By default, the turtle will look like a small arrow.

turtle.exitonclick()
When the user clicks on the
turtle window it will
automatically close.

turtle.begin_fill()
Entered before the code that draws a shape so it
knows to fill in the shape it is drawing.

turtle.end_fill()
Entered after the code that is drawing the shape to
tell Python to stop filling in the shape.

turtle.color(“black”,“red”)
Defines the colours filling in the shape. This
example will make the shape have a black outline
and a red fill. This needs to be entered before the
shape is drawn.

Challenges 60 - 68: Turtle Graphics 553

Challenges

060
Draw a square.

061
Draw a triangle.

062
Draw a circle.

063
Draw three squares
in a row with a gap
between each. Fill
them using three
different colours.

064
Draw a five-pointed
star.

065
Write the numbers as shown below,
starting at the bottom of the number
one.

066
Draw an octagon that uses a different colour (randomly
selected from a list of six possible colours) for each line.

067
Create the following pattern:

068
Draw a pattern that will change each time the
program is run. Use the random function to pick
the number of lines, the length of each line and
the angle of each turn.

Your
programming

skills are
growing with

every
challenge you

complete.

554 Challenges 60 - 68: Turtle Graphics

Answers 0060

061

062

Challenges 60 - 68: Turtle Graphics 555

0063

064

556 Challenges 60 - 68: Turtle Graphics

0065

Challenges 60 - 68: Turtle Graphics 557

0066

067

068

558 Challenges 69 - 79: Tuples, Lists and Dictionaries

Challenges 69 - 79

Tuples, Lists and

Dictionaries
Explanation
So far, we have used variables that can store a single item of data in them. When you used
the random.choice([“red”,“blue”,“green”]) line of code you are picking a
random item from a list of possible options. This demonstrates that one item can hold
several pieces of separate data, in this case a collection of colours.

There are several ways that collections of data can be stored as a
single item. Three of the simpler ones are:

� tuples

� lists

� dictionaries

TTuples
Once a tuple is defined you cannot change what is stored in it. This means that when you
write the program you must state what the data is that is being stored in the tuple and the
data cannot be altered while the program is running. Tuples are usually used for menu
items that would not need to be changed.

Lists
The contents of a list can be changed while the program is running and lists are one of
the most common ways to store a collection of data under one variable name in Python. The
data in a list does not all have to be of the same data type. For example, the same list can
store both strings and integers; however, this can cause problems later and is therefore not
recommended.

Please note: In other programming languages the term array is often used
to describe a variable that contains a collection of data, and these work in a similar way to

Challenges 69 - 79: Tuples, Lists and Dictionaries 559

lists in Python. There is a data type called an array in Python, but this is only used to store
numbers and we will look at Python numeric arrays on page 72.

DDictionaries
The contents of a dictionary can also be changed while the program is running. Each
value is given an index or key you can define to help identify each piece of data. This index
will not change if other rows of data are added or deleted, unlike lists where the position of
the items can change and therefore their index number will also change.

Don’t get yourself in a tangle, take each program
and break it into the parts you already know from
previous programs and build in the new skills you

are learning.

660 Challenges 69 - 79: Tuples, Lists and Dictionaries

Example Code

fruit_tuple = (“apple”,“banana”,“strawberry”,“orange”)
Creates a variable name called “fruit_tuple” which stores four pieces of fruit within it. The
round brackets define this group as a tuple and therefore the contents of this collection of
data cannot be altered while the program is running.

print(fruit_tuple.index(“strawberry”))
Displays the index (i.e. the numeric key) of the item “strawberry”. In this example it
will return the number 2 as Python starts counting the items from 0, not 1.

print(fruit_tuple[2])
Displays item 2 from
“fruit_tuple”, in this case
“strawberry”.

names_list = [“John”,“Tim”,“Sam”]
Creates a list of the names and stores them in the
variable “names_list”. The square brackets define
this group of data as a list and therefore the contents
can be altered while the program is running.

names_list.append(input(“Add a name: “))
Asks the user to enter a name and will add that to the end of
“names_list”.

del names_list[1]
Deletes item 1 from
“names_list”. Remember
it starts counting from 0
and not 1. In this case it
will delete “Tim” from the
list. print(sorted(names_list))

Displays names_list in alphabetical
order but does not change the order of
the original list, which is still saved in
the original order. This does not work
if the list is storing data of different
types, such as strings and numeric
data in the same list.

names_list.sort()
Sorts name_list into
alphabetical order and
saves the list in the new
order. This does not work
if the list is storing data of
different types, such as
strings and numeric data
in the same list.

colours = {1:“red”,2:“blue”,3:“green”}
Creates a dictionary called “colours”, where each item is
assigned an index of your choosing. The first item in each
block is the index, separated by a colon and then the
colour.

colours[2] = “yellow”
Makes a change to the data stored in position 2 of the colours dictionary. In this case it will
change “blue” to “yellow”.

Challenges 69 - 79: Tuples, Lists and Dictionaries 661

As lists are one of the most common data structures we include more example code just for
lists.

x = [154,634,892,345,341,43]
Here we have created a list that contains

numbers. Please note: as it contains numeric
data, no speech marks are required.

print(x[1:4])
This will display data in positions 1, 2 and 3. In
this case 634, 892 and 345. Remember, Python
starts counting from 0 and will stop when it gets
to the last position, without showing the final
value.

print(len(x))
Displays the length of the list
(i.e. how many items are in the
list).

num = int(input(“Enter number: ”))
if num in x:
 print(num,“is in the list”)
else:
 print(“Not in the list”)
Asks the user to enter a number and checks
whether the number is in the list and displays an
appropriate message.

for i in x:
 print(i)
Uses the items in the list in a for
loop, useful if you want to print
the items in a list on separate
lines.

x.insert(2,420)
Inserts the number
420 into position 2 and
pushes everything
else along to make
space. This will
change the index
numbers of the items
in the list.

x.remove(892)
Deletes an item from
the list. This is useful
if you do not know the
index of that item. If
there is more than one
instance of the data it
will only delete the
first instance.

x.append(993)
Adds the number 993 to the end of the list.

662 Challenges 69 - 79: Tuples, Lists and Dictionaries

Challenges

069
Create a tuple containing the names of five countries and display the whole tuple. Ask
the user to enter one of the countries that have been shown to them and then display
the index number (i.e. position in the list) of that item in the tuple.

070
Add to program 069 to ask the
user to enter a number and
display the country in that
position.

071
Create a list of two sports. Ask the
user what their favourite sport is and
add this to the end of the list. Sort the
list and display it.

072
Create a list of six school subjects. Ask the user which of these
subjects they don’t like. Delete the subject they have chosen from the
list before you display the list again.

073
Ask the user to
enter four of their
favourite foods
and store them in
a dictionary so
that they are
indexed with
numbers starting
from 1. Display
the dictionary in
full, showing the
index number
and the item. Ask
them which they
want to get rid of
and remove it
from the list. Sort
the remaining
data and display
the dictionary.

074
Enter a list of ten colours.
Ask the user for a starting
number between 0 and 4
and an end number
between 5 and 9. Display
the list for those colours
between the start and end
numbers the user input.

075
Create a list of four three-digit
numbers. Display the list to the
user, showing each item from
the list on a separate line. Ask
the user to enter a three-digit
number. If the number they
have typed in matches one in
the list, display the position of
that number in the list,
otherwise display the message
“That is not in the list”.

076
Ask the user to enter the names of three people they want to
invite to a party and store them in a list. After they have entered
all three names, ask them if they want to add another. If they do,
allow them to add more names until they answer “no”. When
they answer “no”, display how many people they have invited to
the party.

Challenges 69 - 79: Tuples, Lists and Dictionaries 663

077
Change program 076 so that once the user has completed their list of names, display the
full list and ask them to type in one of the names on the list. Display the position of that
name in the list. Ask the user if they still want that person to come to the party. If they
answer “no”, delete that entry from the list and display the list again.

078
Create a list containing the titles of
four TV programmes and display
them on separate lines. Ask the
user to enter another show and a
position they want it inserted into
the list. Display the list again,
showing all five TV programmes in
their new positions.

079
Create an empty list called “nums”.
Ask the user to enter numbers.
After each number is entered, add
it to the end of the nums list and
display the list. Once they have
entered three numbers, ask them if
they still want the last number they
entered saved. If they say “no”,
remove the last item from the list.
Display the list of numbers.

You are over halfway
there. Keep going,
you have already
learnt so much.

664 Challenges 69 - 79: Tuples, Lists and Dictionaries

Answers 0069

070

071

072

073

Challenges 69 - 79: Tuples, Lists and Dictionaries 665

0074

075

076

077

078

666 Challenges 69 - 79: Tuples, Lists and Dictionaries

0079

Challenges 80 - 87: More String Manipulation 667

Challenges 80 - 87

More String

Manipulation
Explanation
A string is the technical name for a group of characters that you do not need to perform
calculations with. “Hello” would be an example of a string, as would “7B”.

Here we have a variable called name which is assigned the value “Simon”.

“Simon” can be thought of as a sequence of individual characters and each character in
that string can be identified by its index.

Index 0 1 2 3 4

Value S i m o n

Note how strings start indexing from 0 and not 1, just as lists do. If the string had a space in
it, the space would also be counted as a character, as would any punctuation in the string.

Index 0 1 2 3 4 5 6 7 8 9 10 11

Value H e l l o W o r l d !

Now you are familiar with dealing with lists, strings should hold no problems for you as they
use the same methods you have used with lists. However, I have included some additional
code which may prove useful.

668 Challenges 80 - 87: More String Manipulation

Example Code
PPlease note: in the examples below, “msg” is a variable name containing a string.

if msg.isupper():
 print(“Uppercase”)
else:
 print(“This is not in uppercase”)
If the message is in uppercase it will display the message
“Uppercase”, otherwise it will display the message “This
is not in uppercase”.

msg.islower()
Can be used in place of
the isupper () function
to check if the variable
contains lower case
letters.

msg=”Hello”
for letter in msg:
 print(letter,end=”*”)
Displays the message, and between each character it will display a “*”.
The output in this example will be: H*e*l*l*o*

Remember, you can always
look back on previous
programs to remind

yourself of the skills learnt
earlier.

Challenges 80 - 87: More String Manipulation 669

Challenges

080
Ask the user to enter their
first name and then display
the length of their first name.
Then ask for their surname
and display the length of
their surname. Join their first
name and surname together
with a space between and
display the result. Finally,
display the length of their full
name (including the space).

081
Ask the user to type in their favourite school subject.
Display it with “-” after each letter, e.g. S-p-a-n-i-s-h-.

082
Show the user a line of text from your favourite poem
and ask for a starting and ending point. Display the
characters between those two points.

083
Ask the user to type in a word in upper case. If they
type it in lower case, ask them to try again. Keep
repeating this until they type in a message all in
uppercase. 084

Ask the user to type in their
postcode. Display the first
two letters in uppercase. 085

Ask the user to type in their name
and then tell them how many vowels
are in their name. 086

Ask the user to enter a new password. Ask
them to enter it again. If the two passwords
match, display “Thank you”. If the letters are
correct but in the wrong case, display the
message “They must be in the same case”,
otherwise display the message “Incorrect”.

087
Ask the user to type in a word and then
display it backwards on separate lines. For
instance, if they type in “Hello” it should
display as shown below:

770 Challenges 80 - 87: More String Manipulation

Answers 0080

081

082

083

084

Challenges 80 - 87: More String Manipulation 771

0085

086

087

772 Challenges 88 - 95: Numeric Arrays

Challenges 88 - 95

Numeric Arrays
Explanation
Earlier in the book we looked at lists (see page 58). Lists can store a jumble of different types
of data at the same time, including strings and numbers. Python arrays are similar to

lists, but they are only used to store numbers. Numbers can have varying ranges, but

in an array all pieces of data in that array must have the same data type, as outlined
in the table below.

TType code CCommon name DDescription SSize in bytes

'i' Integer Whole number between -32,768 and 32,767 2

'l' Long Whole number between -2,147,483,648 and
2,147,483,647 4

'f' Floating-point

Allows decimal places with numbers ranging
from -1038 to 1038 (i.e. allows up to 38 numeric
characters including a single decimal point

anywhere in that number and can be negative or
positive value)

4

'd' Double
Allows decimal places with numbers ranging

from -10308 to 10308 8

When you create your array you need to define the type of data it will contain. You cannot
alter or change this while the program is running. Therefore, if you define an array as an 'i'
type (this allows whole numbers between the values −32,768 and 32,767) you cannot add a
decimal point to a number in that array later as it will cause an error message and crash the
program.

Please note: Other programming languages use the term array to
allow the storage of any data type, but in Python arrays only store numbers whereas lists
allow the storage of any data type. If you want to create a variable that stores multiple
strings, in Python you need to create a list rather than an array.

Challenges 88 - 95: Numeric Arrays 773

Example Code

from array import *
This needs to be the first line of your program so that
Python can use the array library.

nums = array (‘i',[45,324,654,45,264])
print(nums)
Creates an array called “nums”. It uses the integer data type and has five items in the
array. It will display the following as the output:

array('i', [45, 324, 654, 45, 264])

nums = sorted(nums)
Sorts the array into
ascending order.

newValue = int(input(“Enter number: “))
nums.append(newValue)
Asks the user to enter a new number which it will add to
the end of the existing array.

newArray = array(‘i’,[])
more = int(input(“How many items: ”))
for y in range(0,more):
 newValue=int(input(“Enter num: ”))
 newArray.append(newValue)
nums.extend(newArray)
Creates a blank array called “newArray” which uses the
integer data type. It asks the user how many items they
want to add and then appends these new items to
newArray. After all the items have been added it will join
together the contents of newArray and the nums array.

for x in nums:
 print(x)
Displays the array with
each item appearing on
a separate line.

nums.reverse()
Reverses the order of
the array.

getRid = int(input(“Enter item index: ”))
nums.remove(getRid)
Asks the user to enter the item they want to get rid of and then removes the first item
that matches that value from the array.

nums.pop()
This will remove the last
item from the array.

print(nums.count(45))
This will display how many times the value “45” appears in the array.

774 Challenges 88 - 95: Numeric Arrays

Challenges

088
Ask the user for a list of five
integers. Store them in an array.
Sort the list and display it in
reverse order.

089
Create an array which will store a list of integers.
Generate five random numbers and store them in
the array. Display the array (showing each item on
a separate line).

090
Ask the user to enter numbers. If they enter a
number between 10 and 20, save it in the array,
otherwise display the message “Outside the
range”. Once five numbers have been
successfully added, display the message “Thank
you” and display the array with each item shown
on a separate line.

091
Create an array which contains
five numbers (two of which
should be repeated). Display
the whole array to the user. Ask
the user to enter one of the
numbers from the array and
then display a message saying
how many times that number
appears in the list. 092

Create two arrays (one
containing three numbers that
the user enters and one
containing a set of five random
numbers). Join these two arrays
together into one large array.
Sort this large array and display
it so that each number appears
on a separate line.

093
Ask the user to enter five
numbers. Sort them into order
and present them to the user.
Ask them to select one of the
numbers. Remove it from the
original array and save it in a
new array.

094
Display an array of five
numbers. Ask the user to
select one of the numbers.
Once they have selected a
number, display the
position of that item in the
array. If they enter
something that is not in
the array, ask them to try
again until they select a
relevant item.

095
Create an array of five numbers
between 10 and 100 which each have
two decimal places. Ask the user to
enter a whole number between 2 and 5.
If they enter something outside of that
range, display a suitable error message
and ask them to try again until they
enter a valid amount. Divide each of the
numbers in the array by the number the
user entered and display the answers
shown to two decimal places.

Keep
going!

Challenges 88 - 95: Numeric Arrays 775

Answers 0088

089

090

776 Challenges 88 - 95: Numeric Arrays

0091

092

Challenges 88 - 95: Numeric Arrays 777

0093

094

778 Challenges 88 - 95: Numeric Arrays

0095

Challenges 96 - 103: 2D Lists and Dictionaries 779

Challenges 96 - 103

2D Lists and

Dictionaries
Explanation
Technically it is possible to create a two-dimensional array in Python, but as Python arrays
are limited to storing numbers and most Python programmers feel more comfortable with
working with lists, 2D arrays are rarely used and 2D lists are far more common.

Imagine, for one terrifying moment, you are a teacher. Scary I know! Also
imagine you have four students and you teach those same students across
three different subjects. You may, if you are a conscientious teacher, need to

keep records of those students’ grades for each of their subjects. It is possible to create a
simple chart on paper to do this as follows:

 Maths English French

Susan 45 37 54

Peter 62 58 59

Mark 49 47 60

Andy 78 83 62

880 Challenges 96 - 103: 2D Lists and Dictionaries

Two-dimensional lists work in a similar way.

 0 1 2

0 45 37 54

1 62 58 59

2 49 47 60

3 78 83 62

In Python, this two-dimensional list would be coded as follows:

Alternatively, if you do not want to use the standard Python column index numbers you can
use a dictionary as follows:

This program will produce the output 37 (the English grade for the pupil with the index
number 0) and can make the data easier to understand.

You can even go further and add a row index as follows:

This will give the output 58, the grade for Peter’s English exam.

Challenges 96 - 103: 2D Lists and Dictionaries 881

Example Code

simple_array = [[2,5,8],[3,7,4],[1,6,9]]
Creates a 2D list (as shown on the right) which uses
standard Python indexing for the rows and columns.

print(simple_array)
Displays all the data in the 2D
list.

print(simple_array[1])
Displays data from row 1, in this case
[3, 7, 4].

print(simple_array[1][2])
Displays data from row 1, column 2, in
this case 4.

simple_array[2][1]= 5
Changes the data in row 2,
column 1 to the value 5.

simple_array[1].append(3)
Adds the value 3 onto the end of the data in
row 1 so in this case it becomes [3, 7, 4, 3].

data_set = {“A”:{“x”:54,“y”:82,“z”:91},“B”:{“x”:75,“y”:29,“z”:80}}
Creates a 2D dictionary using user-defined labels for the rows and columns (as shown
above).

print(data_set[“A”])
Displays data from data set “A”.

print(data_set[“B”][“y”])
Displays data from row “B”, column “y”.

grades[name]={“Maths”:mscore,“English”:escore}
Adds another row of data to a 2D dictionary. In this case, name would be the row index
and Maths and English would be the column indexes.

for name in grades:
 print((name),grades[name][“English”])
Displays only the name and the English grade for each
student.

for i in data_set:
 print(data_set [i][“y”])
Displays the “y” column from each row.

del list[getRid]
Removes a selected
item.

data_set[“B”][“y”] = 53
Changes the data in “B”, “y”, to 53.

882 Challenges 96 - 103: 2D Lists and Dictionaries

Challenges
096
Create the following using a
simple 2D list using the
standard Python indexing:

0977
Using the 2D list from program 096, ask the user to
select a row and a column and display that value.

0988
Using the 2D list from program 096, ask the user
which row they would like displayed and display
just that row. Ask them to enter a new value and
add it to the end of the row and display the row
again. 0999

Change your previous program
to ask the user which row they
want displayed. Display that
row. Ask which column in that
row they want displayed and
display the value that is held
there. Ask the user if they want
to change the value. If they do,
ask for a new value and change
the data. Finally, display the
whole row again.

100
Create the following using a 2D dictionary showing
the sales each person has made in the different
geographical regions:

101
Using program 100, ask the user for a name and a region. Display the relevant data. Ask
the user for the name and region of data they want to change and allow them to make
the alteration to the sales figure. Display the sales for all regions for the name they
choose.

102
Ask the user to enter the name, age and shoe size for four
people. Ask for the name of one of the people in the list and
display their age and shoe size.

103
Adapt program 102
to display the
names and ages of
all the people in
the list but do not
show their shoe
size.

1004
After gathering the four names, ages and shoe sizes, ask the
user to enter the name of the person they want to remove from
the list. Delete this row from the data and display the other rows
on separate lines.

Challenges 96 - 103: 2D Lists and Dictionaries 883

Answers 0096

097

098

099

100
Please note the data has been split onto separate rows to make it easier to read the code.
This is possible, as long as the breaks are where the rows will natural break and are
contained within the curly brackets.

884 Challenges 96 - 103: 2D Lists and Dictionaries

1101

102

103

Challenges 96 - 103: 2D Lists and Dictionaries 885

1104

886 Challenges 105 - 110: Reading and Writing to a Text File

Challenges 105 - 110

Reading and Writing

to a Text File
Explanation
It is all very well being able to define a list, make changes and add new data, but if the next
time the program is run it returns to the original data and your changes are lost then it is
not a lot of use. Therefore, it is sometimes necessary to save data outside of the program
and this way the data can be stored, along with any changes that are made.

The easiest place to start learning about writing and reading from an external
file is with a text file.

When opening an external file you must specify how that file will be used within the
program. The options are below.

CCode DDescription

w
WWrite mmode: used to create a new file. Any existing files
with the same name will be erased and a new one
created in its place.

r RRead mmode: used when an existing file is only being
read and not being written to.

a AAppend mmode: used to add new data to the end of the
file.

Text files are only used to write, read and append data. By the very nature of how they work
it is not easy to remove or alter individual elements of data once it is written to the file,
unless you want to overwrite the entire file or create a new file to store the new
data. If you want to be able to alter the individual elements once the file has
been created it is better to use a .csv file (see page 91) or an SQL database (see
page 134).

Challenges 105 - 110: Reading and Writing to a Text File 887

Example Code

file = open(“Countries.txt”,“w”)
file.write(“Italy\n”)
file.write(“Germany\n”)
file.write(“Spain\n”)
file.close()
Creates a file called “Countries.txt”. If one already exists then it will be overwritten with
a new blank file. It will add three lines of data to the file (the \n forces a new line after
each entry). It will then close the file, allowing the changes to the text file to be saved.

file = open(“Countries.txt”,“r”)
print(file.read())
This will open the Countries.txt file in “read”
mode and display the entire file.

file = open(“Countries.txt”,“a”)
file.write(“France\n”)
file.close()
This will open the Countries.txt file in “append”
mode, add another line and then close the file.
If the file.close() line is not included, the
changes will not be saved to the text file.

888 Challenges 105 - 110: Reading and Writing to a Text File

Challenges

105
Write a new file
called
“Numbers.txt”.
Add five numbers
to the document
which are stored
on the same line
and only
separated by a
comma. Once you
have run the
program, look in
the location where
your program is
stored and you
should see that
the file has been
created. The
easiest way to
view the contents
of the new text file
on a Windows
system is to read it
using Notepad.

106
Create a new file called “Names.txt”. Add five names to the
document, which are stored on separate lines. Once you have
run the program, look in the location where your program is
stored and check that the file has been created properly.

107
Open the
Names.txt
file and
display
the data
in Python.

108
Open the Names.txt file. Ask the user to input a
new name. Add this to the end of the file and
display the entire file.

109
Display the following menu to the user:

Ask the user to enter 1, 2 or 3. If they select
anything other than 1, 2 or 3 it should display a
suitable error message.

If they select 1, ask the user to enter a school
subject and save it to a new file called
“Subject.txt”. It should overwrite any existing file
with a new file.

If they select 2, display the contents of the
“Subject.txt” file.

If they select 3, ask the user to enter a new
subject and save it to the file and then display
the entire contents of the file.

Run the program several times to test the
options.

110
Using the Names.txt file you
created earlier, display the list of
names in Python. Ask the user to
type in one of the names and then
save all the names except the one
they entered into a new file called
Names2.txt.

Fantastic work, saving data to
external files is an important

programming skill.

Challenges 105 - 110: Reading and Writing to a Text File 889

Answers 1105

106

107

108

990 Challenges 105 - 110: Reading and Writing to a Text File

1109

110

Challenges 111 - 117: Reading and Writing to a .csv File 991

Challenges 111 - 117

Reading and Writing

to a .csv File
Explanation
CCSV stands for CComma Separated Values and is a format usually associated with importing
and exporting from spreadsheets and databases. It allows greater control over the data
than a simple text file, as each row is split up into identifiable columns. Below is an
example of data you may want to store.

Name Age Star sign
Brian 73 Taurus

Sandra 48 Virgo
Zoe 25 Scorpio

Keith 43 Leo

A .csv file would store the above data as follows:

However, it may be easier to think of it as being separated into columns and rows that use
an index number to identify them.

992 Challenges 111 - 117: Reading and Writing to a .csv File

When opening a .csv file to use, you must specify how that file will be used. The options
are:

CCode DDescription

w
Creates a new file and writes to that file. If the file
already exists, a new file will be created, overwriting
the existing file.

x
Creates a new file and writes to that file. If the file
already exists, the program will crash rather than
overwrite it.

r Opens for reading only and will not allow you to make
changes.

a Opens for writing, appending to the end of the file.

Challenges 111 - 117: Reading and Writing to a .csv File 993

Example Code

import csv
This must be at
the top of your
program to allow
Python to use the
.csv library of
commands.

file = open (“Stars.csv”,“w”)
newRecord = “Brian,73,Taurus\n”
file.write(str(newRecord))
file.close()
This will create a new file called “Stars.csv”, overwriting any
previous files of the same name. It will add a new record and
then close and save the changes to the file.

file = open (“Stars.csv”,“a”)
name = input(“Enter name: ”)
age = input(“Enter age: ”)
star = input(“Enter star sign: ”)
newRecord = name + “,” + age + “,” + star + “\n”
file.write(str(newRecord))
file.close()
This will open the Stars.csv file, ask the user to enter the name, age
and star sign, and will append this to the end of the file.

file = open(“Stars.csv”,“r”)
for row in file:
 print(row)
This will open the Stars.csv file in read
mode and display the records one row at
a time.

file = open(“Stars.csv”,“r”)
reader = csv.reader(file)
rows = list(reader)
print(rows[1])
This will open the Stars.csv file and
display only row 1. Remember, Python
starts counting from 0.

file = open (“Stars.csv”,“r”)
search = input(“Enter the data you are searching for: ”)
reader = csv.reader(file)
for row in file:
 if search in str(row):
 print(row)
Asks the user to enter the data they are searching for. It will display all rows that contain
that data anywhere in that row.

994 Challenges 111 - 117: Reading and Writing to a .csv File

import csv
file = list(csv.reader(open(“Stars.csv”)))
tmp = []
for row in file:
 tmp.append(row)
A .csv file cannot be altered, only added to. If you need to alter the file you need to
write it to a temporary list. This block of code will read the original .csv file and write it
to a list called “tmp”. This can then be used and altered as a list (see page 58).

file = open(“NewStars.csv”,“w”)
x = 0
for row in tmp:
 newRec = tmp[x][0] + ”,” + tmp[x][1] + ”,” + tmp[x][2] + ”\n”
 file.write(newRec)
 x = x + 1
file.close()
Writes from a list into a new .csv file called “NewStars.csv”.

Challenges 111 - 117: Reading and Writing to a .csv File 995

Challenges

111
Create a .csv file that will store the following data. Call it “Books.csv”.

 Book Author Year Released
0 To Kill A Mockingbird Harper Lee 1960
1 A Brief History of Time Stephen Hawking 1988
2 The Great Gatsby F. Scott Fitzgerald 1922
3 The Man Who Mistook His Wife for a Hat Oliver Sacks 1985
4 Pride and Prejudice Jane Austen 1813

112
Using the Books.csv file
from program 111, ask
the user to enter another
record and add it to the
end of the file. Display
each row of the .csv file
on a separate line.

113
Using the Books.csv file, ask the user how many records
they want to add to the list and then allow them to add
that many. After all the data has been added, ask for an
author and display all the books in the list by that author.
If there are no books by that author in the list, display a
suitable message.

114
Using the Books.csv file, ask the user
to enter a starting year and an end
year. Display all books released
between those two years.

115
Using the Books.csv file, display the data in
the file along with the row number of each.

116
Import the data from the Books.csv file into a list. Display the
list to the user. Ask them to select which row from the list
they want to delete and remove it from the list. Ask the user
which data they want to change and allow them to change it.
Write the data back to the original .csv file, overwriting the
existing data with the amended data.

117
Create a simple maths quiz that will ask the user for their name and then generate two
random questions. Store their name, the questions they were asked, their answers and
their final score in a .csv file. Whenever the program is run it should add to the .csv file
and not overwrite anything.

996 Challenges 111 - 117: Reading and Writing to a .csv File

Answers 1111

112

Challenges 111 - 117: Reading and Writing to a .csv File 997

1113

114

115

998 Challenges 111 - 117: Reading and Writing to a .csv File

1116

117

Challenges 118 - 123: Subprograms 999

Challenges 118 - 123

Subprograms
Explanation
Subprograms are blocks of code which perform specific
tasks and can be called upon at any time in the program to
run that code.

AAdvantages
� You can write a block of code and it can be used and re-

used at different times during the program.

� It makes the program simpler to understand as the code
is grouped together into chunks.

Defining a subprogram and passing variables
between subprograms
Below is a simple program that we would normally create
without subprograms but have written it with subprograms
so you can see how they work:

This program uses three subprograms get_name(), print_Msg() and main().

The get_name() subprogram will ask the user to input their name and then it will return
the value of the variable “user_name” so that it can be used in another subprogram. This is
very important. If you do not return the values, then the values of any variables that were
created or altered in that subprogram cannot be used elsewhere in your program.

