

Table of Contents
Preface 1

Chapter 1: Let Us Begin Our Automation Journey 8
Introduction 8
Creating a virtual environment 9

Getting ready 10
How to do it... 10
How it works... 11
There's more... 12
See also 13

Installing third-party packages 14
Getting ready 14
How to do it... 15
How it works... 15
There's more... 16
See also 16

Creating strings with formatted values 16
Getting ready 17
How to do it... 17
How it works... 18
There's more... 18
See also 20

Manipulating strings 20
Getting ready 20
How to do it... 21
How it works... 22
There's more... 23
See also 25

Extracting data from structured strings 25
Getting ready 25
How to do it... 26
How it works... 26
There's more... 27
See also 28

Using a third-party tool—parse 29
Getting ready 29
How to do it... 30
How it works... 31
There's more... 31
See also 32

Table of Contents

[ii]

Introducing regular expressions 33
Getting ready 34
How to do it... 34
How it works... 35
There's more... 37
See also 38

Going deeper into regular expressions 38
How to do it... 38
How it works... 39
There's more... 41
See also 42

Adding command-line arguments 42
Getting ready 42
How to do it... 43
How it works... 45
There's more... 47
See also 47

Chapter 2: Automating Tasks Made Easy 48
Introduction 48
Preparing a task 49

Getting ready 49
How to do it... 50
How it works... 52
There's more... 53
See also 55

Setting up a cron job 55
Getting ready 56
How to do it... 57
How it works... 59
There's more... 60
See also 60

Capturing errors and problems 60
Getting ready 61
How to do it... 61
How it works... 64
There's more... 65
See also 66

Sending email notifications 66
Getting ready 66
How to do it... 67
How it works... 69
There's more... 69
See also 70

Chapter 3: Building Your First Web Scraping Application 71

Table of Contents

[iii]

Introduction 71
Downloading web pages 72

Getting ready 72
How to do it... 73
How it works... 74
There's more... 74
See also 74

Parsing HTML 75
Getting ready 75
How to do it... 75
How it works... 77
There's more... 77
See also 78

Crawling the web 78
Getting ready 78
How to do it... 80
How it works... 81
There's more... 82
See also 83

Subscribing to feeds 83
Getting ready 84
How to do it... 84
How it works... 85
There's more... 86
See also 86

Accessing web APIs 86
Getting ready 87
How to do it... 88
How it works... 89
There's more... 90
See also 90

Interacting with forms 90
Getting ready 91
How to do it... 94
How it works... 95
There's more... 95
See also 96

Using Selenium for advanced interaction 96
Getting ready 96
How to do it... 96
How it works... 99
There's more... 99
See also 100

Accessing password-protected pages 100
Getting ready 100

Table of Contents

[iv]

How to do it... 101
How it works... 101
There's more... 102
See also 102

Speeding up web scraping 103
Getting ready 103
How to do it... 104
How it works... 105
There's more... 107
See also 107

Chapter 4: Searching and Reading Local Files 108
Introduction 108
Crawling and searching directories 109

Getting ready 109
How to do it... 109
How it works... 111
There's more... 111
See also 112

Reading text files 112
Getting ready 112
How to do it... 113
How it works... 114
There's more... 114
See also 115

Dealing with encodings 115
Getting ready 116
How to do it... 116
How it works... 117
There's more... 117
See also 118

Reading CSV files 118
Getting ready 118
How to do it... 119
How it works... 120
There's more... 121
See also 121

Reading log files 122
Getting ready 122
How to do it... 122
How it works... 123
There's more... 124
See also 124

Reading file metadata 124
Getting ready 124

Table of Contents

[v]

How to do it... 125
How it works... 125
There's more... 126
See also 127

Reading images 127
Getting ready 127
How to do it... 129
How it works... 130
There's more... 131
See also 133

Reading PDF files 133
Getting ready 133
How to do it... 133
How it works... 135
There's more... 136
See also 136

Reading Word documents 137
Getting ready 137
How to do it... 137
How it works... 139
There's more... 140
See also 140

Scanning documents for a keyword 141
Getting ready 141
How to do it... 142
How it works... 143
There's more... 144
See also 144

Chapter 5: Generating Fantastic Reports 145
Introduction 145
Creating a simple report in plain text 145

Getting ready 146
How to do it... 146
How it works... 147
There's more... 148
See also 148

Using templates for reports 148
Getting ready 149
How to do it... 149
How it works... 150
There's more... 151
See also 152

Formatting text in Markdown 152
Getting ready 153

Table of Contents

[vi]

How to do it... 153
How it works... 154
There's more... 155
See also 155

Writing a basic Word document 156
Getting ready 156
How to do it... 156
How it works... 157
There's more... 158
See also 158

Styling a Word document 159
Getting ready 159
How to do it... 159
How it works... 161
There's more... 162
See also 163

Generating structure in Word documents 163
Getting ready 163
How to do it... 164
How it works... 169
There's more... 169
See also 170

Adding pictures to Word documents 170
Getting ready 170
How to do it... 171
How it works... 172
There's more... 173
See also 174

Writing a simple PDF document 174
Getting ready 174
How to do it... 175
How it works... 176
There's more... 177
See also 178

Structuring a PDF 178
Getting ready 178
How to do it... 179
How it works... 183
There's more... 184
See also 184

Aggregating PDF reports 184
Getting ready 185
How to do it... 185
How it works... 186
There's more... 186

Table of Contents

[vii]

See also 187
Watermarking and encrypting a PDF 187

Getting ready 187
How to do it... 188
How it works... 190
There's more... 191
See also 191

Chapter 6: Fun with Spreadsheets 192
Introduction 192
Writing a CSV spreadsheet 193

Getting ready 193
How to do it... 193
How it works... 194
There's more... 195
See also 195

Updating the CSV files 195
Getting ready 196
How to do it... 196
How it works... 197
There's more... 198
See also 198

Reading an Excel spreadsheet 198
Getting ready 199
How to do it... 199
How it works... 200
There's more... 201
See also 201

Updating an Excel spreadsheet 202
Getting ready 202
How to do it... 202
How it works... 203
There's more... 204
See also 205

Creating new sheets on an Excel spreadsheet 205
Getting ready 205
How to do it... 205
How it works... 207
There's more... 208
See also 208

Creating charts in Excel 209
Getting ready 209
How to do it... 209
How it works... 211
There's more... 211

Table of Contents

[viii]

See also 212
Working with format in Excel 212

Getting ready 213
How to do it... 213
How it works... 215
There's more... 216
See also 217

Creating a macro in LibreOffice 217
Getting ready 218
How to do it... 220
How it works... 222
There's more... 224
See also 224

Chapter 7: Developing Stunning Graphs 225
Introduction 225
Plotting a simple sales graph 225

Getting ready 226
How to do it... 226
How it works... 227
There's more... 228
See also 229

Drawing stacked bars 230
Getting ready 230
How to do it... 230
How it works... 231
There's more... 232
See also 234

Plotting pie charts 234
Getting ready 235
How to do it... 235
How it works... 236
There's more... 237
See also 238

Displaying multiple lines 238
Getting ready 239
How to do it... 239
How it works... 240
There's more... 241
See also 243

Drawing a scatter plot 243
Getting ready 243
How to do it... 244
How it works... 245
There's more... 246

Table of Contents

[ix]

See also 248
Visualizing maps 248

Getting ready 248
How to do it... 249
How it works... 251
There's more... 252
See also 255

Adding legends and annotations 255
Getting ready 255
How to do it... 256
How it works... 257
There's more... 258
See also 260

Combining graphs 261
Getting ready 261
How to do it... 261
How it works... 263
There's more... 264
See also 264

Saving charts 265
Getting ready 265
How to do it... 265
How it works... 266
There's more... 266
See also 266

Chapter 8: Dealing with Communication Channels 267
Introduction 267
Working with email templates 268

Getting ready 268
How to do it... 268
How it works... 270
There's more... 271
See also 272

Sending an individual email 272
Getting ready 272
How to do it... 273
How it works... 274
There's more... 275
See also 276

Reading an email 276
Getting ready 276
How to do it... 277
How it works... 278
There's more... 279

Table of Contents

[x]

See also 280
Adding subscribers to an email newsletter 280

Getting ready 280
How to do it... 282
How it works... 283
There's more... 284
See also 284

Sending notifications via email 284
Getting ready 284
How to do it... 286
How it works... 287
There's more... 288
See also 289

Producing SMS 289
Getting ready 289
How to do it... 291
How it works... 292
There's more... 293
See also 293

Receiving SMS 294
Getting ready 294
How to do it... 296
How it works... 298
There's more... 299
See also 300

Creating a Telegram bot 300
Getting ready 301
How to do it... 301
How it works... 303
There's more... 304
See also 306

Chapter 9: Why Not Automate Your Marketing Campaign? 307
Introduction 307
Detecting the opportunities 308

Getting ready 309
How to do it... 309
How it works... 310
There's more... 311
See also 312

Creating personalized coupon codes 312
Getting ready 313
How to do it... 313
How it works... 314
There's more... 317

Table of Contents

[xi]

See also 318
Sending a notification to the customer on their preferred channel 318

Getting ready 319
How to do it... 320
How it works... 321
There's more... 323
See also 324

Preparing sales information 324
Getting ready 324
How to do it... 325
How it works... 327
There's more... 329
See also 329

Generating a sales report 330
Getting Ready 330
How to do it... 331
How it works 333
There's more... 335
See also 337

Chapter 10: Debugging Techniques 338
Introduction 338
Learning Python interpreter basics 340

How to do it... 340
How it works... 341
There's more... 342
See also 343

Debugging through logging 343
Getting ready 343
How to do it... 344
How it works... 345
There's more... 346
See also 347

Debugging with breakpoints 347
Getting ready 347
How to do it... 348
How it works... 350
There's more... 351
See also 352

Improving your debugging skills 352
Getting ready 352
How to do it... 353
How it works... 356
There's more... 358
See also 360

Table of Contents

[xii]

Other Books You May Enjoy 361

Index 364

1
Let Us Begin Our Automation

Journey
In this chapter, we'll cover the following recipes:

Creating a virtual environment
Installing third-party packages
Creating strings with formatted values
Manipulating strings
Extracting data from structured strings
Using a third-party tool—parse
Introducing regular expressions
Going deeper into regular expressions
Adding command-line arguments

Introduction
The objective of this chapter is to lay down some of the basic techniques that will be useful
through this book. The main idea is to be able to create a good Python environment to run
the automation tasks that will follow, and be able to parse text inputs into structured data.

Python has a good amount of tools installed by default, but it also makes it easy to install
third-party tools that can simplify common operations when processing texts. In this
chapter, we'll see how to import modules from external sources and use them to leverage
the full potential of Python.

Let Us Begin Our Automation Journey Chapter 1

[9]

The ability to structure input data is critical in any automation task. Most of the data that
we will process in this book will come from unformatted sources such as web pages or text
files. As the old computer adage says, garbage in, garbage out, making the sanitizing of
inputs a very important task.

Creating a virtual environment
As a first step when working with Python, it is a good practice to explicitly define the
working environment. This helps with detaching from the operative system interpreter and
environment, and properly defining the dependencies that will be used. Not doing so tends
to generate chaotic scenarios. Remember, explicit is better than implicit!

This is especially important in two scenarios:

When dealing with multiple projects on the same computer, as they can have
different dependencies that clash at some point. For example, two versions of the
same module cannot be installed in the same environment.
When working on a project that will be used on a different computer, for
example, developing some code in a personal laptop that will ultimately run in a
remote server.

A common joke among developers is responding to a bug with it runs on
my machine, meaning that it appears to work on their laptop, but not on
the production servers. Although a huge number of factors can produce
this error, a good practice is to produce an automatically replicable
environment, reducing uncertainty over what dependencies are really
being used.

This is easy to achieve using the virtualenv module, which sets up a virtual environment,
so none of the installed dependencies will be shared with the Python version installed on
the machine.

In Python3, the virtualenv tool is installed automatically, which was not
the case in previous versions.

Let Us Begin Our Automation Journey Chapter 1

[10]

Getting ready
To create a new virtual environment, do the following:

Go to the main directory that contains the project.1.
Type the following command:2.

$ python3 -m venv .venv

This creates a subdirectory called .venv that contains the virtual environment.

The directory containing the virtual environment can be located
anywhere. Keeping it on the same root keeps it handy, and adding a dot
in front of it avoids it being displayed when running ls or other
commands.

Before activating the virtual environment, check the version installed in pip. This3.
is different depending on your operative system, for example, 9.0.3 for MacOS
High Sierra 10.13.4. It will be upgraded later. Also check the referenced Python
interpreter, which will be the main operating system one:

$ pip --version
pip 9.0.3 from /usr/local/lib/python3.6/site-packages/pip (python 3.6)
$ which python3
/usr/local/bin/python3

Now, your virtual environment is ready to go.

How to do it...
Activate the virtual environment by running this:1.

$ source .venv/bin/activate

You'll notice that the prompt will display (.venv), showing that the virtual
environment is active.

Let Us Begin Our Automation Journey Chapter 1

[11]

Notice that the Python interpreter used is the one inside the virtual environment,2.
and not the general operative system one from step 3 of Getting ready. Checking
the location within a virtual environment:

(.venv) $ which python
/root_dir/.venv/bin/python
(.venv) $ which pip
/root_dir/.venv/bin/pip

Upgrade the version of pip and check the version:3.

(.venv) $ pip install --upgrade pip
...
Successfully installed pip-10.0.1
(.venv) $ pip --version
pip 10.0.1 from /root_dir/.venv/lib/python3.6/site-packages/pip (python
3.6)

Get out of the environment and run pip to check the version, which will return4.
the previous environment. Check the pip version and the Python interpreter to
show the ones before activating the virtual environment ones, as shown in step 3
of the Getting ready section. Note that they are different pip versions!

(.venv) $ deactivate
$ which python3
/usr/local/bin/python3
$ pip --version
pip 9.0.3 from /usr/local/lib/python3.6/site-packages/pip (python 3.6)

How it works...
Notice that inside the virtual environment you can use python instead of python3,
although python3 is available as well. This will use the Python interpreter defined in the
environment.

In some systems like Linux, it's possible that you need to use python3.7
instead of python3. Verify that the Python interpreter you're using is 3.7
or higher.

Inside the virtual environment, step 3 of the How to do it... section installs the most recent
version of pip, without affecting the external installation.

Let Us Begin Our Automation Journey Chapter 1

[12]

The virtual environment contains all the Python data in the .venv directory, and the
activate script points all the environment variables there. The best thing about it is that it
can be deleted and recreated very easily, removing the fear of experimenting in a self-
contained sandbox.

Remember that the directory name is displayed in the prompt. If you need
to differentiate the environment, use a descriptive directory name, such as
.my_automate_recipe, or use the --prompt option.

There's more...
To remove a virtual environment, deactivate it and remove the directory:

(.venv) $ deactivate
$ rm -rf .venv

The venv module has more options, which can be shown with the -h flag:

$ python3 -m venv -h
usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--
clear]
 [--upgrade] [--without-pip] [--prompt PROMPT]
 ENV_DIR [ENV_DIR ...]
Creates virtual Python environments in one or more target directories.
positional arguments:
 ENV_DIR A directory to create the environment in.

optional arguments:
 -h, --help show this help message and exit
 --system-site-packages
 Give the virtual environment access to the system
 site-packages dir.
 --symlinks Try to use symlinks rather than copies, when symlinks
 are not the default for the platform.
 --copies Try to use copies rather than symlinks, even when
 symlinks are the default for the platform.
 --clear Delete the contents of the environment directory if it
 already exists, before environment creation.
 --upgrade Upgrade the environment directory to use this version
 of Python, assuming Python has been upgraded in-place.
 --without-pip Skips installing or upgrading pip in the virtual
 environment (pip is bootstrapped by default)
 --prompt PROMPT Provides an alternative prompt prefix for this
 environment.

Let Us Begin Our Automation Journey Chapter 1

[13]

Once an environment has been created, you may wish to activate it, for
example, by
sourcing an activate script in its bin directory.

A convenient way of dealing with virtual environments, especially if you often have to
swap between them, is using the virtualenvwrapper module:

To install it, run this:1.

$ pip install virtualenvwrapper

Then, add the following variables to your sheet startup script, these normally2.
being .bashrc or .bash_profile. The virtual environments will be installed
under the WORKON_HOME directory instead of the same directory as the project, as
shown previously:

export WORKON_HOME=~/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

Sourcing the startup script or opening a new Terminal will allow you to create
new virtual environments:

$ mkvirtualenv automation_cookbook
...
Installing setuptools, pip, wheel...done.
(automation_cookbook) $ deactivate
$ workon automation_cookbook
(automation_cookbook) $

For more information, check the documentation of virtualenvwrapper at: https:/ /
virtualenvwrapper. readthedocs. io/ en/ latest/ index. html.

Hitting the Tab key after workon autocompletes with the available
environments.

See also
The Installing third-party packages recipe
The Using a third-party tool—parse recipe

Let Us Begin Our Automation Journey Chapter 1

[14]

Installing third-party packages
One of the strongest capabilities of Python is the ability to use an impressive catalog of
third-party packages that cover an amazing amount of ground in different areas, from
modules specialized in performing numerical operations, machine learning, and network
communications, to command-line convenience tools, database access, image processing,
and much more!

Most of them are available on the official Python Package Index (https:/ /pypi. org/),
which has more than 130,000 packages ready to use. In this book, we'll install some of them,
and in general spending a little time researching external tools when trying to solve a
problem is time well spent. It's very likely that someone else has created a tool that solves
all, or at least part, of the problem.

As important as finding and installing a package is keeping track of which packages are
being used. This greatly helps with replicability, meaning the ability to start the whole
environment from scratch in any situation.

Getting ready
The starting point is to find a package that will be of use in our project.

A great one is requests, a module that deals with HTTP requests and is known for its easy
and intuitive interface, as well as its great documentation. Take a look at the
documentation, which can be found here: http:/ /docs. python- requests. org/en/ master/ .

We'll use requests throughout this book when dealing with HTTP connections.

The next step will be to choose the version to use. In this case, the latest (2.18.4, at the time
of writing) will be perfect. If the version of the module is not specified, by default, it will
install the latest version, which can lead to inconsistencies in different environments.

We'll also use the great delorean module for time handling (version 1.0.0 http:/ /
delorean.readthedocs. io/ en/ latest/).

Let Us Begin Our Automation Journey Chapter 1

[15]

How to do it...
Create a requirements.txt file in our main directory, which will specify all the1.
requirements for our project. Let's start with delorean and requests:

delorean==1.0.0
requests==2.18.4

Install all the requirements with the pip command:2.

$ pip install -r requirements.txt
...
Successfully installed babel-2.5.3 certifi-2018.4.16 chardet-3.0.4
delorean-1.0.0 humanize-0.5.1 idna-2.6 python-dateutil-2.7.2
pytz-2018.4 requests-2.18.4 six-1.11.0 tzlocal-1.5.1 urllib3-1.22

You can now use both modules when using the virtual environment:3.

$ python
Python 3.6.5 (default, Mar 30 2018, 06:41:53)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import delorean
>>> import requests

How it works...
The requirements.txt file specifies the module and version, and pip performs a search
on pypi.org.

Note that creating a new virtual environment from scratch and running the following will
completely recreate your environment, which makes replicability very straightforward:

$ pip install -r requirements.txt

Note that step 2 of the How to do it... section automatically installs other modules that are
dependencies, such as urllib3.

Let Us Begin Our Automation Journey Chapter 1

[16]

There's more...
If any of the modules need to be changed to a different version because a new version is
available, change it using requirements and run the install command again:

$ pip install -r requirements.txt

This is also applicable when a new module needs to be included.

At any point, the freeze command can be used to display all installed modules. freeze
returns the modules in a format compatible with requirements.txt, making it possible to
do this to generate a file with our current environment:

$ pip freeze > requirements.txt

This will include dependencies, so expect a lot more modules in the file.

Finding great third-party modules is not easy sometimes. Searching for
specific functionality can work well, but sometimes there are great
modules that are a surprise because they do things you never thought of.
A great curated list is Awesome Python (https:/ /awesome- python. com/),
which covers a lot of great tools for common Python use cases, such as
cryptography, database access, date and time handling, and so on.

In some cases, installing packages may require additional tools, such as compilers or a
specific library that supports some functionality (for example, a particular database driver).
If that's the case, the documentation will normally explain the dependencies.

See also
The Creating a virtual environment recipe
The Using a third-party tool—parse recipe

Creating strings with formatted values
One of the basic abilities when dealing with creating text and documents is to be able to
properly format the values into structured strings. Python is quite smart in presenting good
defaults, such as properly rendering a number, but there are a lot of options and
possibilities.

Let Us Begin Our Automation Journey Chapter 1

[17]

We'll discuss some of the common options when creating formatted text with the example
of a table.

Getting ready
The main tool to format strings in Python is the format method. It works with a defined
mini-language to render variables this way:

result = template.format(*parameters)

The template is a string that gets interpreted based on the mini-language. At its easiest, it
replaces the values between curly brackets with the parameters. Here are a couple of
examples:

>>> 'Put the value of the string here: {}'.format('STRING')
"Put the value of the string here: STRING"
>>> 'It can be any type ({}) and more than one ({})'.format(1.23, str)
"It can be any type (1.23) and more than one (<class 'str'>)"
>> 'Specify the order: {1}, {0}'.format('first', 'second')
'Specify the order: second, first'
>>> 'Or name parameters: {first}, {second}'.format(second='SECOND',
first='FIRST')
'Or name parameters: FIRST, SECOND'

In 95% of cases, this formatting will be all that's required; keeping things simple is great!
But for complicated times, such as when aligning the strings automatically and creating
good looking text tables, the mini-language format has more options.

How to do it...
Write the following script, recipe_format_strings_step1.py, to print an1.
aligned table:

INPUT DATA
data = [
 (1000, 10),
 (2000, 17),
 (2500, 170),
 (2500, -170),
]
Print the header for reference
print('REVENUE | PROFIT | PERCENT')

Let Us Begin Our Automation Journey Chapter 1

[18]

This template aligns and displays the data in the proper format
TEMPLATE = '{revenue:>7,} | {profit:>+7} | {percent:>7.2%}'

Print the data rows
for revenue, profit in data:
 row = TEMPLATE.format(revenue=revenue, profit=profit,
percent=profit / revenue)
 print(row)

Run it to display the following aligned table. Note that PERCENT is correctly2.
displayed as a percentage:

REVENUE | PROFIT | PERCENT
 1,000 | +10 | 1.00%
 2,000 | +17 | 0.85%
 2,500 | +170 | 6.80%
 2,500 | -170 | -6.80%

How it works...
The TEMPLATE constant contains three columns, each one properly named (REVENUE,
PROFIT, PERCENT). This makes it more explicit and straightforward to apply the template
on the format call.

After the name of the parameter, there's a colon that separates the format definition. Note
that all inside the curly brackets. In all columns, the format specification sets the width to
seven characters and aligns the values to the right with the > symbol:

Revenue adds a thousands separator with the , symbol—[{revenue:>7,}].
Profit adds a + sign for positive values. A - for negatives is added
automatically—[{profit:>+7}].
Percent displays a percent value, with a precision of two decimal
places—[{percent:>7.2%}]. This is done through 0.2 (precision) and adding a
% symbol for the percentage.

There's more...
You may have also seen the available Python formatting with the % operator. While it
works for simple formatting, it is less flexible than the formated mini-language, and it is not
recommended for use.

Let Us Begin Our Automation Journey Chapter 1

[19]

A great new feature since Python 3.6 is to use f-strings, which perform a format action
using defined variables this way:

>>> param1 = 'first'
>>> param2 = 'second'
>>> f'Parameters {param1}:{param2}'
'Parameters first:second'

This simplifies a lot of the code and allows us to create very descriptive and readable code.

Be careful when using f-strings to ensure that the string is replaced at the
proper time. A common problem is that the variable defined to be
rendered is not yet defined. For example, TEMPLATE, defined previously,
won't be defined as an f-string, as revenue and the rest of the parameters
are not available at that point.

If you need to write a curly bracket, you'll need to repeat it twice. Note that each
duplication will be displayed as a single curly bracket, plus a curly bracket for the value
replacement, making a total of three brackets:

>> value = 'VALUE'
>>> f'This is the value, in curly brackets {{{value}}}'
'This is the value, in curly brackets {VALUE}'

This allows us to create meta templates—templates that produce templates. In some cases,
that will be useful, but try to limit their use, as they'll get complicated very quickly,
producing code that will be difficult to read.

The Python Format Specification mini-language has more options than the ones shown
here.

As the language tries to be quite concise, sometimes it can be difficult to
determine the position of the symbols. You may sometimes ask yourself
questions like—Is the + symbol before or after than the width
parameters.? Read the documentation with care and remember to always
include a colon before the format specification.

Please check the full documentation and examples on the Python website (https:/ /docs.
python.org/3/library/ string. html#formatspec).

Let Us Begin Our Automation Journey Chapter 1

[20]

See also
The Template Reports recipe in Chapter 5, Generating Fantastic Reports
The Manipulating strings recipe

Manipulating strings
A basic ability when dealing with text is to be able to properly manipulate that text. That
means to be able to join it, split it into regular chunks, or change it to be uppercase or
lowercase. We'll discuss more advanced methods for parsing text and separating it later,
but in lots of cases it is useful to divide a paragraph into lines, sentences, or even words.
Other times, words will have to have some characters removed or replaced with a canonical
version to be able to compare it with a determined value.

Getting ready
We'll define a basic text to transform it into its main components, and then we'll reconstruct
it. As an example, a report needs to be transformed into a new format to be sent via email.

The input format we'll use in this example will be this:

 AFTER THE CLOSE OF THE SECOND QUARTER, OUR COMPANY, CASTAÑACORP
 HAS ACHIEVED A GROWTH IN THE REVENUE OF 7.47%. THIS IS IN LINE
 WITH THE OBJECTIVES FOR THE YEAR. THE MAIN DRIVER OF THE SALES HAS
BEEN
 THE NEW PACKAGE DESIGNED UNDER THE SUPERVISION OF OUR MARKETING
DEPARTMENT.
 OUR EXPENSES HAS BEEN CONTAINED, INCREASING ONLY BY 0.7%, THOUGH
THE BOARD
 CONSIDERS IT NEEDS TO BE FURTHER REDUCED. THE EVALUATION IS
SATISFACTORY
 AND THE FORECAST FOR THE NEXT QUARTER IS OPTIMISTIC. THE BOARD
EXPECTS
 AN INCREASE IN PROFIT OF AT LEAST 2 MILLION DOLLARS.

Let Us Begin Our Automation Journey Chapter 1

[21]

We need to redact the text to eliminate any references to numbers. It needs to be properly
formatted by adding a new line after each period, justified with 80 characters, and
transformed into ASCII for compatibility reasons.

The text will be stored in the INPUT_TEXT variable in the interpreter.

How to do it...
After entering the text, split it into individual words:1.

>>> INPUT_TEXT = '''
... AFTER THE CLOSE OF THE SECOND QUARTER, OUR COMPANY, CASTAÑACORP
... HAS ACHIEVED A GROWTH IN THE REVENUE OF 7.47%. THIS IS IN LINE
...
'''
>>> words = INPUT_TEXT.split()

Replace any numerical digits with an 'X' character:2.

>>> redacted = [''.join('X' if w.isdigit() else w for w in word) for
word in words]

Transform the text into pure ASCII (note that the name of the company contains3.
a letter, ñ, which is not ASCII):

>>> ascii_text = [word.encode('ascii',
errors='replace').decode('ascii')
... for word in redacted]

Group the words into 80-character lines:4.

>>> newlines = [word + '\n' if word.endswith('.') else word for word in
ascii_text]
>>> LINE_SIZE = 80
>>> lines = []
>>> line = ''
>>> for word in newlines:
... if line.endswith('\n') or len(line) + len(word) + 1 >
LINE_SIZE:
... lines.append(line)
... line = ''
... line = line + ' ' + word

Let Us Begin Our Automation Journey Chapter 1

[22]

Format all lines as titles and join them as a single piece of text:5.

>>> lines = [line.title() for line in lines]
>>> result = '\n'.join(lines)

Print the result:6.

>>> print(result)
 After The Close Of The Second Quarter, Our Company, Casta?Acorp Has
Achieved A
 Growth In The Revenue Of X.Xx%.

 This Is In Line With The Objectives For The Year.

 The Main Driver Of The Sales Has Been The New Package Designed Under
The
 Supervision Of Our Marketing Department.

 Our Expenses Has Been Contained, Increasing Only By X.X%, Though The
Board
 Considers It Needs To Be Further Reduced.

 The Evaluation Is Satisfactory And The Forecast For The Next Quarter
Is
 Optimistic.

How it works...
Each of the steps performs a specific transformation of the text:

The first one splits the text on the default separators, whitespaces, and new lines.
This splits it into individual words with no lines or multiple spaces for
separation.
To replace the digits, we go through every character of each word. For each one,
if it's a digit, an 'X' is returned instead. This is done with two list
comprehensions, one to run on the list, and another on each word, replacing only
if there's a digit—['X' if w.isdigit() else w for w in word]. Note that
the words are joined together again.
Each of the words is encoded into an ASCII byte sequence and decoded back
again into the Python string type. Note the use of the errors parameter to force
the replacement of unknown characters such as ñ.

Let Us Begin Our Automation Journey Chapter 1

[23]

The difference between strings and bytes is not very intuitive at first,
especially if you never have to worry about multiple languages or
encoding transformation. In Python 3, there's a strong separation between
strings (internal Python representation) and bytes, so most of the tools
applicable to strings won't be available in byte objects. Unless you have a
good idea of why you need a byte object, always work with Python
strings. If you need to perform transformations like the one in this task,
encode and decode in the same line so that you keep your objects in the
comfortable realm of Python strings. If you are interested in learning more
about encodings, you can check out this brief article (https:/ /eli.
thegreenplace. net/ 2012/ 01/ 30/the- bytesstr- dichotomy- in-python- 3)
and this other longer and more detailed one (http:/ / www.
diveintopython3. net/ strings. html).

This step first adds an extra newline character (the \n character) for all words
ending with a period. This marks the different paragraphs. After that, it creates a
line and adds the words one by one. If an extra word will make it go over 80
characters, it finishes the line and starts a new one. If the line already ends with a
new line, it finishes it and starts another one as well. Note that there's an extra
space added to separate the words.
Finally, each of the lines is capitalized as a Title (the first letter of each word is
upper cased) and all the lines are joined through new lines.

There's more...
Some other useful operations that can be performed on strings are as follows:

Strings can be sliced like any other list. This means that 'word'[0:2] will return
'wo'.
Use .splitlines() to separate lines by newline character.
There are .upper() and .lower() methods, which return a copy with all the
characters set to uppercase or lowercase. Their use is very similar to .title():

>>> 'UPPERCASE'.lower()
'uppercase'

Let Us Begin Our Automation Journey Chapter 1

[24]

For easy replacements (for example, change all A to B or change mine to ours),
use .replace(). This method is useful for very simple cases, but replacements
can get tricky easily. Be careful with the order of replacements to avoid collisions
and case sensitivity issues. Note the wrong replacement in the following
example:

>>> 'One ring to rule them all, one ring to find them, One ring to
bring them all and in the darkness bind them.'.replace('ring',
'necklace')
'One necklace to rule them all, one necklace to find them, One necklace
to bnecklace them all and in the darkness bind them.'

This is similar to the issues we'll see with regular expressions matching unexpected parts of
your code.

There are more examples to follow later. Refer to the regular expressions
recipes for more information.

If you work with multiple languages, or with any kind of non-English input, it is very
useful to learn the basics of Unicode and encodings. In a nutshell, given the vast amount of
characters in all the different languages in the world, including alphabets not related to the
Latin one, such as Chinese or Arabic, there's a standard to try and cover all of them so that
computers can properly understand them. Python 3 greatly improved this situation,
making the strings internal objects to deal with all of those characters. The encoding that
Python uses, and the most common and compatible one, is currently UTF-8.

A good article to learn about the basics of UTF-8 is this blog post: (https:/
/www. joelonsoftware. com/ 2003/ 10/ 08/the- absolute- minimum- every-
software- developer- absolutely- positively- must- know- about-
unicode- and- character- sets- no-excuses/).

Dealing with encodings is still relevant when reading from external files that can be
encoded in different encodings (for example, CP-1252 or windows-1252, which is a
common encoding produced by legacy Microsoft systems, or ISO 8859-15, which is the
industry standard).

Let Us Begin Our Automation Journey Chapter 1

[25]

See also
The Creating strings with formatted values recipe
The Introducing regular expressions recipe
The Going deeper into regular expressions recipe
The Dealing with Encodings recipe in Chapter 4, Searching and Reading Local Files

Extracting data from structured strings
In a lot of automated tasks, we'll need to treat input text that's in a particular format and
extract the relevant information. For example, a spreadsheet may define a percentage in
text (such as 37.4%) that we want to retrieve in numerical format to apply it later (0.374, as a
float).

In this recipe, we'll see how to process sale logs that contain inline information about a
product, such as sold, price, profit, and some other information.

Getting ready
Imagine that we need to parse information stored in sales logs. We'll use a sales log with
the following structure:

[<Timestamp in iso format>] - SALE - PRODUCT: <product id> - PRICE:
$<price of the sale>

For example, a specific log may look like this:

[2018-05-05T10:58:41.504054] - SALE - PRODUCT: 1345 - PRICE: $09.99

Note that the price has a leading zero. All prices will have two digits for the dollars, and
two for the cents.

We need to activate our virtual environment before we start:

$ source .venv/bin/activate

Let Us Begin Our Automation Journey Chapter 1

[26]

How to do it...
In the Python interpreter, make the following imports. Remember to activate1.
your virtualenv, as described in the Creating a virtual environment recipe:

>>> import delorean
>>> from decimal import Decimal

Enter the log to parse:2.

>>> log = '[2018-05-05T11:07:12.267897] - SALE - PRODUCT: 1345 - PRICE:
$09.99'

Split the log into its parts, which are divided by - (note the space before and3.
after the dash). We ignore the SALE part as it doesn't add any relevant
information:

>>> divide_it = log.split(' - ')
>>> timestamp_string, _, product_string, price_string = divide_it

Parse the timestamp into a datetime object:4.

>>> timestamp = delorean.parse(tmp_string.strip('[]'))

Parse the product_id into a integer:5.

>>> product_id = int(product_string.split(':')[-1])

Parse the price into a Decimal type:6.

>>> price = Decimal(price_string.split('$')[-1])

Now, you have all the values in native Python formats:7.

>> timestamp, product_id, price
(Delorean(datetime=datetime.datetime(2018, 5, 5, 11, 7, 12, 267897),
timezone='UTC'), 1345, Decimal('9.99'))

How it works...
The basic working of this is to isolate each of the elements and then parse them in to the
proper type. The first step is to split the full log into smaller parts. The - string is a good
divider, as it splits it into four parts—a timestamp one, one with just the word SALE, the
product, and the price.

Let Us Begin Our Automation Journey Chapter 1

[27]

In the case of the timestamp, we need to isolate the ISO format, which is in brackets in the
log. That's why it's stripped off the brackets. We use the delorean module (introduced
earlier) to parse it in to a datetime object.

The word SALE is ignored. There's no relevant information there.

To isolate the product ID, we split the product part at the colon. Then, we parse the last
element as an integer:

>>> product_string.split(':')
['PRODUCT', ' 1345']
>>> int(' 1345')
1345

To divide the price, we use the dollar sign as a separator, and parse it as a Decimal
character:

>>> price_string.split('$')
['PRICE: ', '09.99']
>>> Decimal('09.99')
Decimal('9.99')

As described in the next section, do not parse this value into a float type.

There's more...
These log elements can be combined together into a single object, helping with parsing and
aggregating them. For example, we could define a class in Python code in the following
way:

class PriceLog(object):
 def __init__(self, timestamp, product_id, price):
 self.timestamp = timestamp
 self.product_id = product_id
 self.price = price
 def __repr__(self):
 return '<PriceLog ({}, {}, {})>'.format(self.timestamp,
 self.product_id,
 self.price)
 @classmethod
 def parse(cls, text_log):
 '''
 Parse from a text log with the format
 [<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: $<price>
 to a PriceLog object

Let Us Begin Our Automation Journey Chapter 1

[28]

 '''
 divide_it = text_log.split(' - ')
 tmp_string, _, product_string, price_string = divide_it
 timestamp = delorean.parse(tmp_string.strip('[]'))
 product_id = int(product_string.split(':')[-1])
 price = Decimal(price_string.split('$')[-1])
 return cls(timestamp=timestamp, product_id=product_id, price=price)

So, the parsing can be done as follows:

>>> log = '[2018-05-05T12:58:59.998903] - SALE - PRODUCT: 897 - PRICE:
$17.99'
>>> PriceLog.parse(log)
<PriceLog (Delorean(datetime=datetime.datetime(2018, 5, 5, 12, 58, 59,
998903), timezone='UTC'), 897, 17.99)>

Avoid using float types for prices. Floats numbers have precision problems that may
produce strange errors when aggregating multiple prices, for example:

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

Try these two options to avoid problems:

Use integer cents as the base unit: This means multiplying currency inputs by
100 and transforming them into integers (or whatever fractional unit is correct for
the currency used). You may still want to change the base when displaying them.
Parse into the Decimal type: The Decimal type keeps the fixed precision and
works as you'd expect. You can find further information about the Decimal type
in the Python docs at https:/ /docs. python. org/ 3. 6/library/ decimal. html.

If you use the Decimal type, parse the results directly into Decimal from
the string. If transforming it first into a float, you can carry the precision
errors to the new type.

See also
The Creating a virtual environment recipe
The Using a third-party tool—parse recipe
The Introducing regular expressions recipe
The Going deeper into regular expressions recipe

Let Us Begin Our Automation Journey Chapter 1

[29]

Using a third-party tool—parse
While manually parsing data, as seen in the previous recipe, works very well for small
strings, it can be very laborious to tweak the exact formula to work with a variety of input.
What if the input has an extra dash sometimes? Or it has a variable length header
depending on the size of one of the fields?

A more advanced option is to use regular expressions, as we'll see in the next recipe. But
there's a great module in Python called parse (https:/ /github. com/ r1chardj0n3s/ parse)
that allows us to reverse format strings. It is a fantastic tool, that's powerful, easy to use,
and greatly improves the readability of the code.

Getting ready
Add the parse module to the requirements.txt file in our virtual environment and
reinstall the dependencies, as shown in the Creating a virtual environment recipe.

The requirements.txt file should look like this:

delorean==1.0.0
requests==2.18.3
parse==1.8.2

Then, reinstall the modules in the virtual environment:

$ pip install -r requirements.txt
...
Collecting parse==1.8.2 (from -r requirements.txt (line 3))
 Using cached
https://files.pythonhosted.org/packages/13/71/e0b5c968c552f75a938db18e8
8a4e64d97dc212907b4aca0ff71293b4c80/parse-1.8.2.tar.gz
...
Installing collected packages: parse
 Running setup.py install for parse ... done
Successfully installed parse-1.8.2

Let Us Begin Our Automation Journey Chapter 1

[30]

How to do it...
Import the parse function:1.

>>> from parse import parse

Define the log to parse, in the same format as in the Extracting data from structured2.
strings recipe:

>>> LOG = '[2018-05-06T12:58:00.714611] - SALE - PRODUCT: 1345 - PRICE:
$09.99'

Analyze it and describe it as you'll do when trying to print it, like this:3.

>>> FORMAT = '[{date}] - SALE - PRODUCT: {product} - PRICE: ${price}'

Run parse and check the results:4.

>>> result = parse(FORMAT, LOG)
>>> result
<Result () {'date': '2018-05-06T12:58:00.714611', 'product': '1345',
'price': '09.99'}>
>>> result['date']
'2018-05-06T12:58:00.714611'
>>> result['product']
'1345'
>>> result['price']
'09.99'

Note the results are all strings. Define the types to be parsed:5.

>>> FORMAT = '[{date:ti}] - SALE - PRODUCT: {product:d} - PRICE:
${price:05.2f}'

Parse once again:6.

>>> result = parse(FORMAT, LOG)
>>> result
<Result () {'date': datetime.datetime(2018, 5, 6, 12, 58, 0, 714611),
'product': 1345, 'price': 9.99}>
>>> result['date']
datetime.datetime(2018, 5, 6, 12, 58, 0, 714611)
>>> result['product']
1345
>>> result['price']
9.99

Let Us Begin Our Automation Journey Chapter 1

[31]

Define a custom type for the price to avoid issues with the float type:7.

>>> from decimal import Decimal
>>> def price(string):
... return Decimal(string)
...
>>> FORMAT = '[{date:ti}] - SALE - PRODUCT: {product:d} - PRICE:
${price:price}'
>>> parse(FORMAT, LOG, {'price': price})
<Result () {'date': datetime.datetime(2018, 5, 6, 12, 58, 0, 714611),
'product': 1345, 'price': Decimal('9.99')}>

How it works...
The parse module allows us to define a format, such as string, that reverses the format
method when parsing values. A lot of the concepts that we discussed when creating strings
applies here—put values in brackets, define the type after a colon, and so on.

By default, as seen in step 4, the values are parsed as strings. This is a good starting point
when analyzing text. The values can be parsed into more useful native types, as shown in
steps 5 and 6 in the How to do it... section. Please note that while most of the parsing types
are the same as the ones in the Python Format Specification mini-language, there are some
others available, such as ti for timestamps in ISO format.

If native types are not enough, our own parsing can be defined, as demonstrated in step 7
in the How to do it... section. Note that the definition of the price function gets a string and
returns the proper format, in this case a Decimal type.

All the issues about floats and price information described in the There's
more section of the Extracting data from structured strings recipe apply here
as well.

There's more...
The timestamp can also be translated into a delorean object for consistency. Also,
delorean objects carry over timezone information. Adding the same structure as in the
previous recipe gives the following object, which is capable of parsing logs:

class PriceLog(object):
 def __init__(self, timestamp, product_id, price):
 self.timestamp = timestamp

Let Us Begin Our Automation Journey Chapter 1

[32]

 self.product_id = product_id
 self.price = price
 def __repr__(self):
 return '<PriceLog ({}, {}, {})>'.format(self.timestamp,
 self.product_id,
 self.price)
 @classmethod
 def parse(cls, text_log):
 '''
 Parse from a text log with the format
 [<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: $<price>
 to a PriceLog object
 '''
 def price(string):
 return Decimal(string)
 def isodate(string):
 return delorean.parse(string)
 FORMAT = ('[{timestamp:isodate}] - SALE - PRODUCT: {product:d} - '
 'PRICE: ${price:price}')
 formats = {'price': price, 'isodate': isodate}
 result = parse.parse(FORMAT, text_log, formats)
 return cls(timestamp=result['timestamp'],
 product_id=result['product'],
 price=result['price'])

So, parsing it returns similar results:

>>> log = '[2018-05-06T14:58:59.051545] - SALE - PRODUCT: 827 - PRICE:
$22.25'
>>> PriceLog.parse(log)
<PriceLog (Delorean(datetime=datetime.datetime(2018, 6, 5, 14, 58, 59,
51545), timezone='UTC'), 827, 22.25)>

This code is contained in the GitHub file Chapter01/price_log.py.

All parse supported types can be found in the documentation at https:/ / github. com/
r1chardj0n3s/parse#format- specification.

See also
The Extracting data from structured strings recipe
The Introducing regular expressions recipe
The Going deeper into regular expressions recipe

Let Us Begin Our Automation Journey Chapter 1

[33]

Introducing regular expressions
A regular expression, or regex, is a pattern to match text. In other words, it allows us to
define an abstract string (typically the definition of a structured kind of text) to check with
other strings to see if they match or not.

It is better to describe them with an example. Think of defining a pattern of text as a word
that starts with an uppercase A and contains only lowercase Ns and As after that. The word
Anna matches it, but Bob, Alice, and James does not. The words Aaan, Ana, Annnn, and Aaaan
will also be matches, but ANNA won't.

If this sounds complicated, that's because it is. Regexes can be notoriously complicated
because they may be incredibly intricate and difficult to follow. But they are very useful,
because they allow us to perform incredibly powerful pattern matching.

Some common uses of regexes are as follow:

Validating input data: For example, that a phone number is only numbers,
dashes, and brackets.
String parsing: Retrieve data from structured strings, such as logs or URLs. This
is similar to what's described in the previous recipe.
Scrapping: Find the occurrences of something in a long text. For example, find all
emails in a web page.
Replacement: Find and replace a word or words with others. For example,
replace the owner with John Smith.

"Some people, when confronted with a problem, think "I know, I'll use regular expressions."
Now they have two problems."

 – Jamie Zawinski

Regular expressions are at their best when they are kept very simple. In general, if there is a
specific tool to do it, prefer it over regexes. A very clear example of this is HTML parsing;
check Chapter 3, Building Your First Web Scraping Application, for better tools to achieve
this.

Some text editors allow us to search using regexes as well. While most are
editors aimed at writing code, such as Vim, BBEdit, or Notepad++, they're
also present in more general tools, such as MS Office, Open Office, or
Google Documents. But be careful, as the particular syntax may be slightly
different.

Let Us Begin Our Automation Journey Chapter 1

[34]

Getting ready
The python module to deal with regexes is called re. The main function we'll cover is
re.search(), which returns a match object with information about what matched the
pattern.

As regex patterns are also defined as strings, we'll differentiate them by
prefixing them with an r, such as r'pattern'. This is the Python way of
labeling a text as raw string literals, meaning that the string within is
taken literally, without any escaping. This means that a \ is used as a
backslash instead of a sequence. For example, without the r prefix, \n
means newline character.

Some characters are special, and refer to concepts such as the end of the string, any digit, any
character, any whitespace character, and so on.

The simplest form is just a literal string. For example, the regex pattern r'LOG' matches the
string 'LOGS', but not the string 'NOT A MATCH'. If there's not a match, search
returns None:

>>> import re
>>> re.search(r'LOG', 'LOGS')
<_sre.SRE_Match object; span=(0, 3), match='LOG'>
>>> re.search(r'LOG', 'NOT A MATCH')
>>>

How to do it...
Import the re module:1.

>>> import re

Then, match a pattern that is not at the start of the string:2.

>>> re.search(r'LOG', 'SOME LOGS')
<_sre.SRE_Match object; span=(5, 8), match='LOG'>

Match a pattern that is only at the start of the string. Note the ^ character:3.

>>> re.search(r'^LOG', 'LOGS')
<_sre.SRE_Match object; span=(0, 3), match='LOG'>
>>> re.search(r'^LOG', 'SOME LOGS')
>>>

Let Us Begin Our Automation Journey Chapter 1

[35]

Match a pattern only at the end of the string. Note the $ character:4.

>>> re.search(r'LOG$', 'SOME LOG')
<_sre.SRE_Match object; span=(5, 8), match='LOG'>
>>> re.search(r'LOG$', 'SOME LOGS')
>>>

Match the word 'thing' (not excluding things), but not something or5.
anything. Note the \b at the start of the second pattern:

>>> STRING = 'something in the things she shows me'
>>> match = re.search(r'thing', STRING)
>>> STRING[:match.start()], STRING[match.start():match.end()],
STRING[match.end():]
('some', 'thing', ' in the things she shows me')
>>> match = re.search(r'\bthing', STRING)
>>> STRING[:match.start()], STRING[match.start():match.end()],
STRING[match.end():]
('something in the ', 'thing', 's she shows me')

Match a pattern that's only numbers and dashes (for example, a phone number).6.
Retrieve the matched string:

>>> re.search(r'[0123456789-]+', 'the phone number is 1234-567-890')
<_sre.SRE_Match object; span=(20, 32), match='1234-567-890'>
>>> re.search(r'[0123456789-]+', 'the phone number is
1234-567-890').group()
'1234-567-890'

Match an email address naively:7.

>>> re.search(r'\S+@\S+', 'my email is email.123@test.com').group()
'email.123@test.com'

How it works...
The re.search function matches a pattern, no matter its position in the string. As
explained previously, this will return None if the pattern is not found, or a match object.

The following special characters are used:

^: Marks the start of the string
$: Marks the end of the string

Let Us Begin Our Automation Journey Chapter 1

[36]

\b: Marks the start or end of a word
\S: Marks any character that's not a whitespace, including special characters

More special characters are shown in the next recipe.

In step 6 in the How to do it... section, the r'[0123456789-]+' pattern is composed of two
parts. The first one is between square brackets, and matches any single character between 0
and 9 (any number) and the dash (-) character. The + sign after that means that this
character can be present one or more times. This is called a quantifier in regexes. This
makes a match on any combination of numbers and dashes, no matter how long it is.

Step 7 again uses the + sign to match as many characters as necessary before the @ and
again after it. In this case, the character match is \S, which matches any non-whitespace
character.

Please note that the naive pattern for emails described here is very naive, as it will match
invalid emails such as john@smith@test.com. A better regex for most uses is r"(^[a-
zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)". You can go to http:/ /
emailregex.com/ for find it and links to more information.

Note that parsing a valid email including corner cases is actually a
difficult and challenging problem. The previous regex should be fine for
most uses covered in this book, but in a general framework project such as
Django, email validation is a very long and very unreadable regex.

The resulting matching object returns the position where the matched pattern starts and
ends (using the start and end methods), as shown in step 5, which splits the string into
matched parts, showing the distinction between the two matching patterns.

The difference displayed in step 5 is a very common one. Trying to
capture GP can end up capturing eggplant and bagpipe! Similarly,
things\b won't capture things. Be sure to test and make the proper
adjustments, such as capturing \bGP\b for just the word GP.

The specific matched pattern can be retrieved by calling group(), as shown in step 6. Note
that the result will always be a string. It can be further processed using any of the methods
that we've previously seen, such as by splitting the phone number into groups by dashes,
for example:

>>> match = re.search(r'[0123456789-]+', 'the phone number is
1234-567-890')
>>> [int(n) for n in match.group().split('-')]
[1234, 567, 890]

Let Us Begin Our Automation Journey Chapter 1

[37]

There's more...
Dealing with regexes can be difficult and complex. Please allow time to test your matches
and be sure that they work as you expect in order to avoid nasty surprises.

You can check your regexes interactively with some tools. A good one that's freely available
online is https:// regex101. com/ , which displays each of the elements and explains the
regex. Double-check that you're using the Python flavor:

See that the EXPLANATION describes that \b matches a word boundary (start or end of a
word), and that thing matches literally these characters.

Let Us Begin Our Automation Journey Chapter 1

[38]

Regexes, in some cases, can be very slow, or even produce what's called
regex denial-of-service, a string created to confuse a particular regex so
that it takes an enormous amount of time, even in the worst case blocking
the computer. While automating tasks probably won't get you into those
problems, keep an eye out in case a regex takes too long.

See also
The Extracting data from structured strings recipe
The Using a third-party tool—parse recipe
The Going deeper into regular expressions recipe

Going deeper into regular expressions
In this recipe, we'll see more about how to deal with regular expressions. After introducing
the basics, we will dig a little deeper into pattern elements, introduce groups as a better
way to retrieve and parse strings, see how to search for multiple occurrences of the same
string, and deal with longer texts.

How to do it...
Import re:1.

>>> import re

Match a phone pattern as part of a group (in brackets). Note the use of \d as a2.
special character for any digit:

>>> match = re.search(r'the phone number is ([\d-]+)', '37: the phone
number is 1234-567-890')
>>> match.group()
'the phone number is 1234-567-890'
>>> match.group(1)
'1234-567-890'

Let Us Begin Our Automation Journey Chapter 1

[39]

Compile a pattern and capture a case insensitive pattern with a yes|no option:3.

>>> pattern = re.compile(r'The answer to question (\w+) is (yes|no)',
re.IGNORECASE)
>>> pattern.search('Naturaly, the answer to question 3b is YES')
<_sre.SRE_Match object; span=(10, 42), match='the answer to question 3b
is YES'>
>>> _.groups()
('3b', 'YES')

Match all the occurrences of cities and state abbreviations in the text. Note that4.
they are separated by a single character and the name of the city always starts
with an uppercase letter. Only four states are matched for simplicity:

>>> PATTERN = re.compile(r'([A-Z][\w\s]+).(TX|OR|OH|MI)')
>>> TEXT ='the jackalopes are the team of Odessa,TX while the knights
are native of Corvallis OR and the mud hens come from Toledo.OH; the
whitecaps have their base in Grand Rapids,MI'
>>> list(PATTERN.finditer(TEXT))
[<_sre.SRE_Match object; span=(31, 40), match='Odessa,TX'>,
<_sre.SRE_Match object; span=(73, 85), match='Corvallis OR'>,
<_sre.SRE_Match object; span=(113, 122), match='Toledo.OH'>,
<_sre.SRE_Match object; span=(157, 172), match='Grand Rapids,MI'>]
>>> _[0].groups()
('Odessa', 'TX')

How it works...
The new special characters that were introduced are as follows. Note that the same letter in
uppercase or lowercase means the opposite match, for example \d matches a digit, while
\D matches a non digit.:

\d: Marks any digit (0 to 9).
\s: Marks any character that's a whitespace, including tabs and other whitespace
special characters. Note that this is the reverse of \S, introduced in the previous
recipe.
\w: Marks any letter (includes digits, but excludes characters such as periods).
.: Marks any character.

Let Us Begin Our Automation Journey Chapter 1

[40]

To define groups, put the defined groups in brackets. Groups can be retrieved individually,
making them perfect for matching a bigger pattern that contains a variable part that we'll
treat later, as demonstrated in step 2. Note the difference with the step 6 pattern in the
previous recipe. In this case, the pattern is not only the number, but includes the prefix,
even if we then extract the number. Check out this difference, where there's a number that's
not the number we want to capture:

>>> re.search(r'the phone number is ([\d-]+)', '37: the phone number is
1234-567-890')
<_sre.SRE_Match object; span=(4, 36), match='the phone number is
1234-567-890'>
>>> _.group(1)
'1234-567-890'
>>> re.search(r'[0123456789-]+', '37: the phone number is
1234-567-890')
<_sre.SRE_Match object; span=(0, 2), match='37'>
>>> _.group()
'37'

Remember that group 0 (.group() or .group(0)) is always the whole match. The rest of
the groups are ordered as they appear.

Patterns can be compiled as well. This saves some time if the pattern needs to be matched
over and over. To use it that way, compile the pattern and then use that object to perform
searches, as shown in steps 3 and 4. Some extra flags can be added, such as making the
pattern case insensitive.

Step 4's pattern requires a little bit of information. It's composed of two groups, separated
by a single character. The special character . means it matches everything, in our example a
period, a whitespace, and a comma. The second group is a straightforward selection of
defined options, in this case US state abbreviations.

The first group starts with an uppercase letter ([A-Z]), and accepts any combination of
letters or spaces ([\w\s]+), but not punctuation marks such as periods or commas. This
matches the cities, including when composed of more than one word.

Note that this pattern starts on any uppercase letter and keeps matching until finding a
state, unless separated by a punctuation mark, which may not be what's expected, for
example:

>>> re.search(r'([A-Z][\w\s]+).(TX|OR|OH|MI)', 'This is a test,
Escanaba MI')
<_sre.SRE_Match object; span=(16, 27), match='Escanaba MI'>
>>> re.search(r'([A-Z][\w\s]+).(TX|OR|OH|MI)', 'This is a test with
Escanaba MI')

Let Us Begin Our Automation Journey Chapter 1

[41]

<_sre.SRE_Match object; span=(0, 31), match='This is a test with
Escanaba MI'>

Step 4 also shows how to find more than one occurrence in a long text. While the
.findall() method exists, it doesn't return the full match object, while
.findalliter() does. Commonplace now in Python 3, .findalliter() returns an
iterator that can be used in a for loop or list comprehension. Note that .search() returns
only the first occurrence of the pattern, even if more matches appear:

>>> PATTERN.search(TEXT)
<_sre.SRE_Match object; span=(31, 40), match='Odessa,TX'>
>>> PATTERN.findall(TEXT)
[('Odessa', 'TX'), ('Corvallis', 'OR'), ('Toledo', 'OH')]

There's more...
The special characters can be reversed if they are case swapped. For example, the reverse of
the ones we used are as follows:

\D: Marks any non-digit
\W: Marks any non-letter
\B: Marks any character that's not at the start or end of a word

The most commonly used special characters are typically \d (digits)
and \w (letters and digits), as they mark common patterns to search for,
and the plus sign for one or more.

Groups can be assigned names as well. This makes them more explicit at the expense of
making the group more verbose in the following shape—(?P<groupname>PATTERN).
Groups can be referred to by name with .group(groupname) or by calling
.groupdict() while maintaining its numeric position.

For example, the step 4 pattern can be described as follows:

>>> PATTERN = re.compile(r'(?P<city>[A-
Z][\w\s]+?).(?P<state>TX|OR|OH|MN)')
>>> match = PATTERN.search(TEXT)
>>> match.groupdict()
{'city': 'Odessa', 'state': 'TX'}
>>> match.group('city')
'Odessa'
>>> match.group('state')

Let Us Begin Our Automation Journey Chapter 1

[42]

'TX'
>>> match.group(1), match.group(2)
('Odessa', 'TX')

Regular expressions are a very extensive topic. There are whole technical books devoted to
them and they can be notoriously deep. The Python documentation is good to be used as
reference (https:// docs. python. org/ 3/ library/ re. html) and to learn more.

If you feel a little intimidated at the start, it's a perfectly natural feeling. Analyze each of the
patterns with care, dividing it into different parts, and they will start to make sense. Don't
be afraid to run a regex interactive analyzer!

Regexes can be really powerful and generic, but they may not be the proper tool for what
you are trying to achieve. We've seen some caveats and patterns that have subtleties. As a
rule of thumb, if a pattern starts to feel complicated, it's time to search for a different tool.
Remember the previous recipes as well and the options they presented, such as parse.

See also
The Introducing regular expressions recipe
The Using a third-party tool—parse recipe

Adding command-line arguments
A lot of tasks can be best structured as a command-line interface that accepts different
parameters to change the way it works, for example, scrapping one web page or another.
Python includes a powerful argparse module in the standard library to create rich
command-line argument parsing with minimal effort.

Getting ready
The basic use of argparse in a script can be shown in three steps:

Define the arguments that your script is going to accept, generating a new parser.1.
Call the defined parser, returning an object with all the resulting arguments.2.
Use the arguments to call the entry point of your script, which will apply the3.
defined behavior.

Let Us Begin Our Automation Journey Chapter 1

[43]

Try to use the following general structure for your scripts:

IMPORTS

def main(main parameters):
 DO THINGS

if __name__ == '__main__':
 DEFINE ARGUMENT PARSER
 PARSE ARGS
 VALIDATE OR MANIPULATE ARGS, IF NEEDED
 main(arguments)

The main function makes it easy to know what the entry point for the code is. The section
under the if statement is only executed if the file is called directly, but not if it's imported.
We'll follow this for all the steps.

How to do it...
Create a script that will accept a single integer as a positional argument, and will1.
print a hash symbol that amount of times. The recipe_cli_step1.py script is
as follows, but note we are following the structure presented previously, and the
main function is just printing the argument:

import argparse

def main(number):
 print('#' * number)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('number', type=int, help='A number')
 args = parser.parse_args()
 main(args.number)

Call the script and see how the parameter is presented. Calling the script with no2.
arguments displays the automatic help. Use the automatic argument -h to
display the extended help:

$ python3 recipe_cli_step1.py
usage: recipe_cli_step1.py [-h] number
recipe_cli_step1.py: error: the following arguments are required:
number
$ python3 recipe_cli_step1.py -h
usage: recipe_cli_step1.py [-h] number

Let Us Begin Our Automation Journey Chapter 1

[44]

positional arguments:
 number A number
optional arguments:
 -h, --help show this help message and exit

Calling the script with the extra parameters works as expected:3.

$ python3 recipe_cli_step1.py 4
####
$ python3 recipe_cli_step1.py not_a_number
usage: recipe_cli_step1.py [-h] number
recipe_cli_step1.py: error: argument number: invalid int value:
'not_a_number'

Change the script to accept an optional argument for the character to print. The4.
default will be '#'. The recipe_cli_step2.py script will look like this:

import argparse

def main(character, number):
 print(character * number)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('number', type=int, help='A number')
 parser.add_argument('-c', type=str, help='Character to print',
 default='#')

args = parser.parse_args()
main(args.c, args.number)

The help is updated, and using the -c flag allows us to print different characters:5.

$ python3 recipe_cli_step2.py -h
usage: recipe_cli_step2.py [-h] [-c C] number

positional arguments:
 number A number

optional arguments:
 -h, --help show this help message and exit
 -c C Character to print
$ python3 recipe_cli_step2.py 4
####
$ python3 recipe_cli_step2.py 5 -c m
mmmmm

Let Us Begin Our Automation Journey Chapter 1

[45]

Add a flag that changes the behavior when present. The recipe_cli_step3.py6.
script is as follows:

import argparse

def main(character, number):
 print(character * number)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('number', type=int, help='A number')
 parser.add_argument('-c', type=str, help='Character to print',
 default='#')
 parser.add_argument('-U', action='store_true', default=False,
 dest='uppercase',
 help='Uppercase the character')
 args = parser.parse_args()

 if args.uppercase:
 args.c = args.c.upper()

 main(args.c, args.number)

Calling it uppercases the character if the -U flag is added:7.

$ python3 recipe_cli_step3.py 4 -c f
ffff
$ python3 recipe_cli_step3.py 4 -c f -U
FFFF

How it works...
As described in step 1 in the How to do it… section, the arguments are added to the parser
through .add_arguments. Once all arguments are defined, calling parse_args() returns
an object that contains the results (or exits if there's an error).

Let Us Begin Our Automation Journey Chapter 1

[46]

Each argument should add a help description, but their behavior can change greatly:

If an argument starts with a -, it is considered an optional parameter, like the -
c argument in step 4. If not, it's a positional argument, like the number argument
in step 1.

For clarity, always define a default value for optional parameters. It will
be None if you don't, but this may be confusing.

Remember to always add a help parameter with a description of the parameter;
help is automatically generated, as shown in step 2.
If a type is present, it will be validated, for example, number in step 3. By default,
the type will be string.
The actions store_true and store_false can be used to generate flags,
arguments that don't require any extra parameters. Set the corresponding default
value as the opposite Boolean. This is demonstrated in the U argument in steps 6
and 7.
The name of the property in the args object will be, by default, the name of the
argument (without the dash, if it's present). You can change it with dest. For
example, in step 6, the command-line argument -U is described as uppercase.

Changing the name of an argument for internal usage is very useful when
using short arguments, such as single letters. A good command-line
interface will use -c, but internally it's probably a good idea to use a more
verbose label, such as configuration_file. Explicit is better than
implicit!

Some arguments can work in coordination with others, as shown in step 3.
Perform all required operations to pass the main function as clear and concise
parameters. For example, in step 3, only two parameters are passed, but one may
have been modified.

Let Us Begin Our Automation Journey Chapter 1

[47]

There's more...
You can create long arguments as well with double dashes, for example:

 parser.add_argument('-v', '--verbose', action='store_true', default=False,
 help='Enable verbose output')

This will accept both -v and --verbose, and it will store the name verbose.

Adding long names is a good way of making the interface more intuitive
and easy to remember. It's easy to remember after a couple of times that
there's a verbose option, and it starts with a v.

The main inconvenience when dealing with command-line arguments may be ending up
with too many of them. This creates confusion. Try to make your arguments as
independent as possible and not make too many dependencies between them, or handling
the combinations can be tricky.

In particular, try to not create more than a couple of positional arguments,
as they won't have mnemonics. Positional arguments also accept default
values, but most of the time that won't be the expected behavior.

For advanced details, check the Python documentation of argparse (https:/ / docs.
python.org/3/library/ argparse. html).

See also
The Creating a virtual environment recipe
The Installing third-party packages recipe

2
Automating Tasks Made Easy

In this chapter, we'll cover the following recipes:

Preparing a task
Setting up a cron job
Capturing errors and problems
Sending email notifications

Introduction
To properly automate tasks, we need a platform so that they run automatically at the
proper times. A task that needs to be run manually is not really fully automated.

But, in order to be able to leave them running in the background while worrying about
more pressing issues, the task will need to be adequate to run in fire-and-forget mode. We
should be able to monitor that it runs correctly, be sure that we are capturing future actions
(such as receiving notifications if something interesting arises), and know whether there
have been any errors while running it.

Ensuring that a piece of software runs consistently with a high reliability is actually a very
big deal and is one area that, to be done properly, requires specialized knowledge and
staff, which typically go by the names of sysadmin, operations, or SRE (Site Reliability
Engineering). Sites like Amazon and Google require huge investment in ensuring that
everything works 24/7.

The objective for this book is way more modest than that. You probably don't require a
downtime lower than a few seconds per year. Running a task with reasonable reliability is a
much easier thing to do. But, be aware that there's maintenance to be done, so be prepared
for that.

Automating Tasks Made Easy Chapter 2

[49]

Preparing a task
It all starts with defining exactly what task needs to be run, and designing it in a way that
doesn't require human intervention to run.

Some ideal characteristic points are as follows:

Single, clear entry point: No confusion on what the task to run is.1.
Clear parameters: If there are any parameters, they should be very explicit.2.
No interactivity: Stopping the execution to request information from the user is3.
not possible.
The result should be stored: To be able to be checked at a different time than4.
when it runs.
Clear result: If we are working interactively in a result, we accept more verbose5.
results, or progress reports. But, for an automated task, the final result should be
as concise and to the point as possible.
Errors should be logged: To analyze what went wrong. 6.

A command-line program has a lot of those characteristics already. It has a clear way of
running, with defined parameters, and the result can be stored, even if just in text format.
But, it can be improved with a config file to clarify the parameters, and an output file.

Note that point 6 is the objective of the Capturing errors and problems recipe, and will be
covered there.

To avoid interactivity, do not use any command that stops for the user to
input, like input. Remember to delete breakpoints for debugging!

Getting ready
We'll start by following a structure in which a main function will serve as the entry point,
and all parameters are supplied to it.

This is the same the basic structure the was presented in the Adding
command-line arguments recipe in Chapter 1, Let's Begin Our Automation
Journey.

Automating Tasks Made Easy Chapter 2

[50]

The definition of a main function will all the explicit arguments covers points 1 and 2. Point
3 is not difficult to achieve.

To improve point 2 and 5, we'll look at retrieving the configuration from a file and storing
the result in another. Another option is to send a notification, such as an email, which will
be covered later in this chapter.

How to do it...
Prepare the following task and save it as prepare_task_step1.py:1.

import argparse

def main(number, other_number):
 result = number * other_number
 print(f'The result is {result}')

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)
 parser.add_argument('-n2', type=int, help='Another number',
default=1)

 args = parser.parse_args()

 main(args.n1, args.n2)

Update the file to define a config file that contains both arguments, and save it as2.
prepare_task_step2.py. Note that defining a config file overwrites any
command-line parameters:

import argparse
import configparser

def main(number, other_number):
 result = number * other_number
 print(f'The result is {result}')

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)

Automating Tasks Made Easy Chapter 2

[51]

 parser.add_argument('-n2', type=int, help='Another number',
default=1)

 parser.add_argument('--config', '-c', type=argparse.FileType('r'),
 help='config file')

 args = parser.parse_args()
 if args.config:
 config = configparser.ConfigParser()
 config.read_file(args.config)
 # Transforming values into integers
 args.n1 = int(config['DEFAULT']['n1'])
 args.n2 = int(config['DEFAULT']['n2'])

 main(args.n1, args.n2)

Create the config file config.ini:3.

[ARGUMENTS]
n1=5
n2=7

Run the command with the config file. Note that the config file overwrites the4.
command-line parameters, as described in step 2:

$ python3 prepare_task_step2.py -c config.ini
The result is 35
$ python3 prepare_task_step2.py -c config.ini -n1 2 -n2 3
The result is 35

Add a parameter to store the result in a file, and save it as5.
prepare_task_step5.py:

import argparse
import sys
import configparser

def main(number, other_number, output):
 result = number * other_number
 print(f'The result is {result}', file=output)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)
 parser.add_argument('-n2', type=int, help='Another number',
default=1)

Automating Tasks Made Easy Chapter 2

[52]

 parser.add_argument('--config', '-c', type=argparse.FileType('r'),
 help='config file')
 parser.add_argument('-o', dest='output',
type=argparse.FileType('w'),
 help='output file',
 default=sys.stdout)

 args = parser.parse_args()
 if args.config:
 config = configparser.ConfigParser()
 config.read_file(args.config)
 # Transforming values into integers
 args.n1 = int(config['DEFAULT']['n1'])
 args.n2 = int(config['DEFAULT']['n2'])

 main(args.n1, args.n2, args.output)

Run the result to check that it's sending the output to the defined file. Note that6.
there's no output outside the result files:

$ python3 prepare_task_step5.py -n1 3 -n2 5 -o result.txt
$ cat result.txt
The result is 15
$ python3 prepare_task_step5.py -c config.ini -o result2.txt
$ cat result2.txt
The result is 35

How it works...
Note that the argparse module allows us to define files as parameters, with
the argparse.FileType type, and opens them automatically. This is very handy, and will
raise an error if the file is not valid.

Remember to open the file in the correct mode. In Step 5, the config file is
opened in read mode (r) and the output file in write mode (w), which will
overwrite the file if it exists. You may find the append mode (a), which
will add the next piece of data at the end of an existing file.

The configparser module allows us to use config files with ease. As demonstrated in
Step 2, the parsing of the file is as simple as follows:

config = configparser.ConfigParser()
config.read_file(file)

Automating Tasks Made Easy Chapter 2

[53]

The config will then be accessible as a dictionary divided by sections, and then values. Note
that the values are always stored in string format, requiring to be transformed into other
types, such as integers:

If you need to obtain boolean values, do not perform value =
bool(config[raw_value]) as it will be transformed into True no
matter what; for instance, the string False is a true string, as it's not
empty. Use the .getboolean method instead, for example, value =
config.getboolean(raw_value).

Python3 allows us to pass a file parameter to the print function, which will write to that
file. Step 5 shows the usage to redirect all the printed information to a file.

Note that the default parameter is sys.stdout, which will print the value to the Terminal
(standard output). This makes it so that calling the script without an -o parameter will
display the information on the screen, which is helpful in debugging:

$ python3 prepare_task_step5.py -c config.ini
The result is 35
$ python3 prepare_task_step5.py -c config.ini -o result.txt
$ cat result.txt
The result is 35

There's more...
Please check out the full documentation of configparse in the official Python
documentation: https:/ /docs. python. org/ 3/library/ configparser. html.

In most cases, this configuration parser should be good enough, but if more power is
needed, you can use YAML files as configuration files. YAML files (https:/ /learn.
getgrav.org/advanced/ yaml) are very common as configuration files, and are better
structured and can be parsed directly, taking into account data types.

Add PyYAML to the requirements.txt file and install it: 1.

PyYAML==3.12

Create the prepare_task_yaml.py file:2.

import yaml
import argparse
import sys

Automating Tasks Made Easy Chapter 2

[54]

def main(number, other_number, output):
 result = number * other_number
 print(f'The result is {result}', file=output)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)
 parser.add_argument('-n2', type=int, help='Another number',
default=1)

 parser.add_argument('-c', dest='config',
type=argparse.FileType('r'),
 help='config file in YAML format',
 default=None)
 parser.add_argument('-o', dest='output',
type=argparse.FileType('w'),
 help='output file',
 default=sys.stdout)

 args = parser.parse_args()
 if args.config:
 config = yaml.load(args.config)
 # No need to transform values
 args.n1 = config['ARGUMENTS']['n1']
 args.n2 = config['ARGUMENTS']['n2']

 main(args.n1, args.n2, args.output)

Define the config file config.yaml, available in GitHub https:/ /github. com/3.
PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter02/
config.yaml :

ARGUMENTS:
 n1: 7
 n2: 4

Then, run the following:4.

$ python3 prepare_task_yaml.py -c config.yaml
The result is 28

There's also the possibility of setting a default config file, as well as a default output file.
This can be handy to create a pure task that requires no input parameters.

Automating Tasks Made Easy Chapter 2

[55]

As a general rule, try to avoid creating too many input and configuration
parameters if the task has a very specific objective in mind. Try to limit the
input parameters to different executions of the task. A parameter that
never changes is probably fine being defined as a constant. A high
number of parameters will make config files or command-line arguments
complicated and will create more maintenance in the long run. On the
other hand, if your objective is to create a very flexible tool to be used in
very different situations, then creating more parameters is probably a
good idea. Try to find your own proper balance!

See also
The Command-line arguments recipe in Chapter 1, Let's Begin Our Automation
Journey
The Sending email notifications recipe
The Debugging with breakpoints recipe in Chapter 10, Debugging Techniques

Setting up a cron job
Cron is an old-fashioned but reliable way of executing commands. It has been around since
the 70s in Unix, and it's an old favorite in system administration to perform maintenance,
such as freeing space, rotating logs, making backups, and other common operations.

This recipe is Unix-specific, so it will work in Linux and MacOS. While it's
possible to schedule a task in Windows, it's very different and uses Task
Scheduler, which won't be described here. If you have access to a Linux
server, it can be a good way of scheduling periodic tasks.

The main advantages are as follows:

It's present in virtually all Unix or Linux systems and configured to run
automatically.
It's easy to use, though a little deceptive.
It's well-known. Almost anyone involved with admin tasks will have a general
idea on how to use it.
It allows for easy periodic commands, with good precision.

Automating Tasks Made Easy Chapter 2

[56]

But, it also has some disadvantages, as follows:

By default, it may not give much feedback. Retrieving the output, logging
execution, and errors is critical.
The task should be as self-contained as possible to avoid problems with
environment variables, such as using the wrong Python interpreter, or what path
should execute.
It is Unix-specific.
Only fixed periodic times are available.
It doesn't control how many tasks run at the same time. Each time the
countdown goes off, it creates a new task. For example, a task that takes one hour
to complete, and that is scheduled to run once every 45 minutes, will have 15
minutes of overlap where two tasks will be running.

Don't understate the latest effect. Running multiple expensive tasks at the
same time can have bad effects on performance. Having expensive tasks
overlapping may result in a race condition where each task is making the
others never finish! Allow ample time for your tasks to finish and keep an
eye on them.

Getting ready
We will produce a script, called cron.py:

import argparse
import sys
from datetime import datetime
import configparser

def main(number, other_number, output):
 result = number * other_number
 print(f'[{datetime.utcnow().isoformat()}] The result is {result}',
 file=output)

if __name__ == '__main__':
 parser =
argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFo
rmatter)
 parser.add_argument('--config', '-c', type=argparse.FileType('r'),
 help='config file',
 default='/etc/automate.ini')

Automating Tasks Made Easy Chapter 2

[57]

 parser.add_argument('-o', dest='output',
type=argparse.FileType('a'),
 help='output file',
 default=sys.stdout)

 args = parser.parse_args()
 if args.config:
 config = configparser.ConfigParser()
 config.read_file(args.config)
 # Transforming values into integers
 args.n1 = int(config['DEFAULT']['n1'])
 args.n2 = int(config['DEFAULT']['n2'])

 main(args.n1, args.n2, args.output)

Note the following details:

The config file, is by default, /etc/automate.ini. Reuse config.ini from the1.
previous recipe.
A timestamp has been added to the output. This will make it explicit when the2.
task is run.
The result is being added to the file, as shown with the 'a' mode where the file3.
is open.
The ArgumentDefaultsHelpFormatter parameter automatically adds4.
information about default values when printing the help using the -h argument.

Check that the task is producing the expected result and that you can log to a known file:

$ python3 cron.py
[2018-05-15 22:22:31.436912] The result is 35
$ python3 cron.py -o /path/automate.log
$ cat /path/automate.log
[2018-05-15 22:28:08.833272] The result is 35

How to do it...
Obtain the full path of the Python interpreter. This is the interpreter that's on1.
your virtual environment:

$ which python
/your/path/.venv/bin/python

Automating Tasks Made Easy Chapter 2

[58]

Prepare the cron to be executed. Get the full path and check that it can be2.
executed with no problem. Execute it a couple of times:

$ /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log
$ /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log

Check that the result is being added correctly to the result file:3.

$ cat /path/automate.log
[2018-05-15 22:28:08.833272] The result is 35
[2018-05-15 22:28:10.510743] The result is 35

Edit the crontab file to run the task once every five minutes:4.

$ crontab -e

*/5 * * * * /your/path/.venv/bin/python /your/path/cron.py -o
/path/automate.log

Note that this opens an editing Terminal with your default command-line editor.

If you haven't set up your default command-line editor, by default, it is
likely Vim. This can be disconcerting if you don't have experience with
Vim. Press I to start inserting text and Esc when you're done. Then, exit
after saving the file with :wq. For more information about Vim, see this
introduction: https:/ / null- byte.wonderhowto. com/ how-to/ intro- vim-
unix- text- editor- every- hacker- should- be-familiar- with- 0174674.
For information on how to change the default command-line editor, see
the following: https:/ /www. a2hosting. com/ kb/ developer- corner/
linux/ setting- the- default- text- editor- in- linux.

Check the crontab contents. Note that this displays the crontab contents, but5.
doesn't set it to edit:

$ contab -l
*/5 * * * * /your/path/.venv/bin/python /your/path/cron.py -o
/path/automate.log

Wait and check the result file to see how the task is being executed:6.

$ tail -F /path/automate.log
[2018-05-17 21:20:00.611540] The result is 35
[2018-05-17 21:25:01.174835] The result is 35
[2018-05-17 21:30:00.886452] The result is 35

Automating Tasks Made Easy Chapter 2

[59]

How it works...
The crontab line consists of a line describing how often to run the task (first six elements),
plus the task. Each of the initial six elements mean a different unit of time to execute. Most
of them are stars, meaning any:

* * * * * *
| | | | | |
| | | | | +-- Year (range: 1900-3000)
| | | | +---- Day of the Week (range: 1-7, 1 standing for Monday)
| | | +------ Month of the Year (range: 1-12)
| | +-------- Day of the Month (range: 1-31)
| +---------- Hour (range: 0-23)
+------------ Minute (range: 0-59)

Therefore, our line, */5 * * * * *, means every time the minute is divisible by 5, in all hours,
all days... all years.

Here are some examples:

30 15 * * * * means "every day at 15:30"
30 * * * * * means "every hour, at 30 minutes"
0,30 * * * * * means "every hour, at 0 minutes and 30 minutes"
*/30 * * * * * means "every half hour"
0 0 * * 1 * means "every Monday at 00:00"

Do not try to guess too much. Use a cheat sheet like https:/ /crontab. guru/ for examples
and tweaks. Most of the common usages will be described there directly. You can also edit
a formula and get a descriptive text on how it's going to run.

After the description of how to run the cron job, include the line to execute the task, as
prepared in Step 2 in the How to do it… section.

Note that the task is described with all the full paths for every related
file—the interpreter, the script, and the output file. This removes all
ambiguity related to paths and reduces the chances of possible errors. A
very common one is not being able to determine one (or more) of the three
elements.

Automating Tasks Made Easy Chapter 2

[60]

There's more...
If there's any problem in the execution of the crontab, you should receive a system mail.
This will show up as a message in the Terminal, like this:

You have mail.
$

This can be read with mail:

$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/jaime": 1 message 1 new
>N 1 jaime@Jaimes-iMac-5K Thu May 17 21:15 19/914 "Cron <jaime@Jaimes-
iM"
? 1
Message 1:
...
/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7
/Resources/Python.app/Contents/MacOS/Python: can't open file 'cron.py':
[Errno 2] No such file or directory

In the next recipe, we will see methods to capture the errors independently so that the task
can run smoothly.

See also
The Adding command-line options recipe in Chapter 1, Let's Begin Our Automation
Journey
The Capturing errors and problems recipe

Capturing errors and problems
An automated task's main characteristic is its fire-and-forget quality. We are not actively
looking at the result, but making it run in the background.

Also, as most of the recipes in this book deal with external information, such as web pages
or other reports, the likelihood of finding an unexpected problem when running it is high.
This recipe will present an automated task that will safely store unexpected behaviors in a
log file that can be checked afterwards.

Automating Tasks Made Easy Chapter 2

[61]

Getting ready
As a starting point, we'll use a task that will divide two numbers, as described in the
command line.

This task is very similar to the one presented in Step 5 in the How to do it…
section, but instead of multiplying two numbers, we'll divide them.

How to do it...
Create the task_with_error_handling_step1.py file, as follows:1.

import argparse
import sys

def main(number, other_number, output):
 result = number / other_number
 print(f'The result is {result}', file=output)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)
 parser.add_argument('-n2', type=int, help='Another number',
default=1)
 parser.add_argument('-o', dest='output',
type=argparse.FileType('w'),
 help='output file', default=sys.stdout)

 args = parser.parse_args()

 main(args.n1, args.n2, args.output)

Execute it a couple of times to see that it divides two numbers:2.

$ python3 task_with_error_handling_step1.py -n1 3 -n2 2
The result is 1.5
$ python3 task_with_error_handling_step1.py -n1 25 -n2 5
The result is 5.0

Automating Tasks Made Easy Chapter 2

[62]

Check that dividing by 0 produces an error, and that the error is not logged on3.
the result file:

$ python task_with_error_handling_step1.py -n1 5 -n2 1 -o result.txt
$ cat result.txt
The result is 5.0
$ python task_with_error_handling_step1.py -n1 5 -n2 0 -o result.txt
Traceback (most recent call last):
 File "task_with_error_handling_step1.py", line 20, in <module>
 main(args.n1, args.n2, args.output)
 File "task_with_error_handling_step1.py", line 6, in main
 result = number / other_number
ZeroDivisionError: division by zero
$ cat result.txt

Create the task_with_error_handling_step4.py file:4.

import logging
import sys
import logging

LOG_FORMAT = '%(asctime)s %(name)s %(levelname)s %(message)s'
LOG_LEVEL = logging.DEBUG

def main(number, other_number, output):
 logging.info(f'Dividing {number} between {other_number}')
 result = number / other_number
 print(f'The result is {result}', file=output)

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-n1', type=int, help='A number', default=1)
 parser.add_argument('-n2', type=int, help='Another number',
default=1)

 parser.add_argument('-o', dest='output',
type=argparse.FileType('w'),
 help='output file', default=sys.stdout)
 parser.add_argument('-l', dest='log', type=str, help='log file',
 default=None)

 args = parser.parse_args()
 if args.log:
 logging.basicConfig(format=LOG_FORMAT, filename=args.log,
 level=LOG_LEVEL)
 else:

Automating Tasks Made Easy Chapter 2

[63]

 logging.basicConfig(format=LOG_FORMAT, level=LOG_LEVEL)

 try:
 main(args.n1, args.n2, args.output)
 except Exception as exc:
 logging.exception("Error running task")
 exit(1)

Run it to check that it displays the proper INFO and ERROR log, and that it stores5.
it on the log file:

$ python3 task_with_error_handling_step4.py -n1 5 -n2 0
2018-05-19 14:25:28,849 root INFO Dividing 5 between 0
2018-05-19 14:25:28,849 root ERROR division by zero
Traceback (most recent call last):
 File "task_with_error_handling_step4.py", line 31, in <module>
 main(args.n1, args.n2, args.output)
 File "task_with_error_handling_step4.py", line 10, in main
 result = number / other_number
ZeroDivisionError: division by zero
$ python3 task_with_error_handling_step4.py -n1 5 -n2 0 -l error.log
$ python3 task_with_error_handling_step4.py -n1 5 -n2 0 -l error.log
$ cat error.log
2018-05-19 14:26:15,376 root INFO Dividing 5 between 0
2018-05-19 14:26:15,376 root ERROR division by zero
Traceback (most recent call last):
 File "task_with_error_handling_step4.py", line 33, in <module>
 main(args.n1, args.n2, args.output)
 File "task_with_error_handling_step4.py", line 11, in main
 result = number / other_number
ZeroDivisionError: division by zero
2018-05-19 14:26:19,960 root INFO Dividing 5 between 0
2018-05-19 14:26:19,961 root ERROR division by zero
Traceback (most recent call last):
 File "task_with_error_handling_step4.py", line 33, in <module>
 main(args.n1, args.n2, args.output)
 File "task_with_error_handling_step4.py", line 11, in main
 result = number / other_number
ZeroDivisionError: division by zero

Automating Tasks Made Easy Chapter 2

[64]

How it works...
To properly capture any unexpected exceptions, the main function should be wrapped into
a try-except block, as done in Step 4 in the How to do it… section. Compare this to how
Step 1 is not wrapping the code:

 try:
 main(...)
 except Exception as exc:
 # Something went wrong
 logging.exception("Error running task")
 exit(1)

Note that logging the exception is important for getting information on what went wrong.

This kind of exception is nicknamed Pokémon, because it can catch'em all,
as it will capture any unexpected error at the highest level. Do not use it in
other areas of the code, as capturing everything can hide unexpected
errors. At the very least, any unexpected exception should be logged to
allow for further analysis.

The extra step to exit with status 1 with the exit(1) call informs the operating system that
something went wrong with our script.

The logging module allows us to log. Note the basic configuration, which includes an
optional file to store the logs, the format, and the level of the logs to display.

The available level for logs are, from less critical to more critical—DEBUG,
INFO, WARNING, ERROR, and CRITICAL. The logging level will set the
minimal severity required to log the message. For example, an INFO log
won't be stored if the severity is set to WARNING.

Creating logs is easy. You can do this by making a call to the method logging.<logging
level>, (where logging level is debug, info, and so on). For example:

>>> import logging
>>> logging.basicConfig(level=logging.INFO)
>>> logging.warning('a warning message')
WARNING:root:a warning message
>>> logging.info('an info message')
INFO:root:an info message
>>> logging.debug('a debug message')
>>>

Automating Tasks Made Easy Chapter 2

[65]

Note how logs with a severity lower than INFO are not displayed. Use the level definition
to tweak how much information to display. This may change, for example, how DEBUG logs
may be used only while developing the task, but not be displayed when running it. Notice
that task_with_error_handling_step4.py is defining the logging level to be DEBUG, by
default.

A good definition of log levels is key to displaying relevant information,
while reducing spam. It is not easy to set up sometimes, but especially if
more than one person is involved, try to agree on exactly what WARNING
versus ERROR means to avoid misinterpretations.

logging.exception() is a special case that will create an ERROR log, but it will also
include information about the exception, such as the stack trace.

Remember to check logs to discover errors. A useful reminder is to add a note on the results
file, like this:

try:
 main(args.n1, args.n2, args.output)
except Exception as exc:
 logging.exception(exc)
 print('There has been an error. Check the logs', file=args.output)

There's more...
The Python logging module has a lot of capabilities, such as the following:

Further tweaks the format of the log, for example, including the file and line
number of the log that was produced.
Defines different logger objects, each one with its own configuration, like logging
level and format. This allows to produce logs to different systems in different
ways, though is normally not used for simplicity.
Sends logs to multiple places, such as that standard output and file, or even a
remote logger.
Automatically rotates logs, creating new log files after a certain time or size. This
is handy in keeping logs organized by day, and allowing for the compression or
removal of old logs.
Reads standard logging configurations from files.

Automating Tasks Made Easy Chapter 2

[66]

Instead of creating complex rules, try to log extensively, but with the
proper level, and then filter.

For comprehensive detail, check the Python docs of the module at https:/ / docs. python.
org/3.7/library/ logging. html, or the tutorial at https:/ /docs. python. org/ 3. 7/howto/
logging.html.

See also
The Adding command-line options recipe in Chapter 1, Let's Begin Our Automation
Journey
The Preparing a task recipe

Sending email notifications
Email has become an inescapable tool that everyone uses everyday. It's probably the best
place to send a notification if an automated task has detected something. On the other
hand, email inboxes are already too filled up with spam messages, so be careful.

Spam filters are also a reality. Be careful with who to send emails to and
the number of emails to be sent. An email server or address can be
labelled as spam, and all emails will be quietly dropped by the internet.

This recipe will show how to send a single email, using an already existing email account.
This approach is viable for spare emails sent to a couple of people, as a result from an
automated task, but no more than that.

Getting ready
For this recipe, we require a valid email account set up, which includes the following:

A valid email server
A port to connect to
An address
A password

Automating Tasks Made Easy Chapter 2

[67]

These four elements should be enough to be able to send an email.

Some email services, for example, Gmail, will encourage you to set up
2FA, meaning that a password is not enough to send an email. Typically,
they'll allow you to create an specific password for apps to use, bypassing
the 2FA request. Check your email provider's information for options.

The email provider to use should indicate what the SMTP server is and port to use in their
documentation. They can be retrieved from email clients as well, as they are the same
parameters. Check your provider documentation. In the following example, we will use a
Gmail account.

How to do it...
Create the email_task.py file, as follows:1.

import argparse
import configparser

import smtplib
from email.message import EmailMessage

def main(to_email, server, port, from_email, password):
 print(f'With love, from {from_email} to {to_email}')

 # Create the message
 subject = 'With love, from ME to YOU'
 text = '''This is an example test'''
 msg = EmailMessage()
 msg.set_content(text)
 msg['Subject'] = subject
 msg['From'] = from_email
 msg['To'] = to_email

 # Open communication and send
 server = smtplib.SMTP_SSL(server, port)
 server.login(from_email, password)
 server.send_message(msg)
 server.quit()

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('email', type=str, help='destination email')

Automating Tasks Made Easy Chapter 2

[68]

 parser.add_argument('-c', dest='config',
type=argparse.FileType('r'),
 help='config file', default=None)

 args = parser.parse_args()
 if not args.config:
 print('Error, a config file is required')
 parser.print_help()
 exit(1)

 config = configparser.ConfigParser()
 config.read_file(args.config)

 main(args.email,
 server=config['DEFAULT']['server'],
 port=config['DEFAULT']['port'],
 from_email=config['DEFAULT']['email'],
 password=config['DEFAULT']['password'])

Create a configuration file called email_conf.ini with the specifics of your2.
email account. For example, for a Gmail account, fill the following template. The
template is available in GitHub https:/ /github. com/ PacktPublishing/ Python-
Automation- Cookbook/ blob/ master/ Chapter02/ email_ conf. ini, but be sure to
fill it with your data:

[DEFAULT]
email = EMAIL@gmail.com
server = smtp.gmail.com
port = 465
password = PASSWORD

Ensure that the file cannot be read or written by other users on the system,3.
setting the permissions of the file to allow only our user. 600 permissions means
read and write access for our user, and no access to anyone else:

$ chmod 600 email_config.ini

Run the script to send a test email:4.

$ python3 email_task.py -c email_config.ini
destination_email@server.com

Check the inbox of the destination email; an email should be received with the5.
subject With love, from ME to YOU.

Automating Tasks Made Easy Chapter 2

[69]

How it works...
There are two key steps in the scripts—the generation of the message, and the sending.

The message needs to contain mainly the To and From email addresses, as well as the
Subject. If the content is pure text, as in this case, calling .set_content() is enough.
The whole message can then be sent.

It is technically possible to send an email from a different email than the
account used to send it. This is discouraged, though, as it can be
considered by your email provider as trying to impersonate a different
email. You can use the reply-to header as a way of allowing answering
to a different account.

Sending the email requires you to connect to the specified server and start an SMPT
connection. SMPT is the standard for email communication.

The steps are quite straightforward—configure the server, log into it, send the prepared
message, and quit.

If you need to send more than one message, you can log in, send multiple
emails, and then quit, instead of connecting each time.

There's more...
If the objective is a bigger operation, like a marketing campaign, or even
production emails like confirming a user's email, please check Chapter
8, Dealing with Communication Channels

The email message content used in this recipe is very simple, but emails can be much more
complicated than that.

The To field can contain multiple recipients. Separate them with commas, like this:

message['To'] = ','.join(recipients)

Automating Tasks Made Easy Chapter 2

[70]

Emails can be defined in HTML, with an alternative plain text, and have attachments. The
basic operation is to set up a MIMEMultipart and then attach each of the MIME parts that
compose the email:

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.image import MIMEImage

message = MIMEMultipart()
part1 = MIMEText('some text', 'plain')
message.attach(part1)
with open('path/image', 'rb') as image:
 part2 = MIMEImage(image.read())
message.attach(part2)

The most common SMPT connection is SMPT_SSL, which is more secure and requires a
login and password, but plain, unauthenticated SMPT exists; check your email provider
documentation.

Remember that this recipe is aimed for simple notifications. Emails can
grow quite complex if attaching different information. If your objective is
an email for customers or any general group, try to use the ideas in
Chapter 8, Dealing with Communication Channels.

See also
The Adding command-line options recipe in Chapter 1, Let's Begin Our Automation
Journey
The Preparing a task recipe

3
Building Your First Web

Scraping Application
In this chapter, we'll cover the following recipes:

Downloading web pages
Parsing HTML
Crawling the web
Subscribing to feeds
Accessing web APIs
Interacting with forms
Using Selenium for advanced interaction
Accessing password-protected pages
Speeding up web scraping

Introduction
The internet, and the WWW (World Wide Web), is probably the most prominent source of
information today. Most of that information is retrievable through the HTTP protocol.
HTTP was invented originally to share pages of hypertext (hence the name HyperText
Transfer Protocol), which started the WWW.

This operation is very familiar, as it is what happens in any web browser. But we can also
perform those operations programmatically to automatically retrieve and process
information. Python has included in the standard library an HTTP client, but the fantastic
requests module makes it very easy. In this chapter, we will see how.

Building Your First Web Scraping Application Chapter 3

[72]

Downloading web pages
The basic ability to download a web page involves making an HTTP GET request against a
URL. This is the basic operation of any web browser. Let's quickly recap the different parts
of this operation:

Using the HTTP protocol.1.
Using the GET method, which is the most common HTTP method. We'll see more2.
in the Accessing web APIs recipe.
URL describing the full address of the page, including the server and the path.3.

That request will be processed by the server and a response will be sent back. This response
will contain a status code, typically 200 if everything went fine, and a body with the result,
which will normally be text with an HTML page.

Most of this is handled automatically by the HTTP client used to perform the request. We'll
see in this recipe how to make a simple request to obtain a web page.

HTTP requests and responses can also contain headers. Headers contain
extra information, such as the total size of the request, the format of the
content, the date of the request, and what browser or server is used.

Getting ready
Using the fantastic requests module, getting web pages is super simple. Install the
module:

$ echo "requests==2.18.3" >> requirements.txt
$ source .venv/bin/activate
(.venv) $ pip install -r requirements.txt

We'll download the page at http:/ /www. columbia. edu/ ~fdc/ sample. html because it is a
straightforward HTML page that is easy to read in text mode.

Building Your First Web Scraping Application Chapter 3

[73]

How to do it...
Import the requests module:1.

>>> import requests

Make a request to the URL, which will take a second or two:2.

>>> url = 'http://www.columbia.edu/~fdc/sample.html'
>>> response = requests.get(url)

Check the returned object status code:3.

>>> response.status_code
200

Check the content of the result:4.

>>> response.text
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">\n<html>\n<head>\n
...
FULL BODY
...
<!-- close the <html> begun above -->\n'

Check the ongoing and returned headers:5.

>>> response.request.headers
{'User-Agent': 'python-requests/2.18.4', 'Accept-Encoding': 'gzip,
deflate', 'Accept': '*/*', 'Connection': 'keep-alive'}
>>> response.headers
{'Date': 'Fri, 25 May 2018 21:51:47 GMT', 'Server': 'Apache', 'Last-
Modified': 'Thu, 22 Apr 2004 15:52:25 GMT', 'Accept-Ranges': 'bytes',
'Vary': 'Accept-Encoding,User-Agent', 'Content-Encoding': 'gzip',
'Content-Length': '8664', 'Keep-Alive': 'timeout=15, max=85',
'Connection': 'Keep-Alive', 'Content-Type': 'text/html', 'Set-Cookie':
'BIGipServer~CUIT~www.columbia.edu-80-pool=1764244352.20480.0000;
expires=Sat, 26-May-2018 03:51:47 GMT; path=/; Httponly'}

Building Your First Web Scraping Application Chapter 3

[74]

How it works...
The operation of requests is very simple; perform the operation, GET in this case, over the
URL. This returns a result object that can be analyzed. The main elements are the
status_code and the body content, which can be presented as text.

The full request can be checked in the request field:

>>> response.request
<PreparedRequest [GET]>
>>> response.request.url
'http://www.columbia.edu/~fdc/sample.html'

The full request's documentation can be found here: http:/ /docs. python- requests. org/
en/master/. Over the course of the chapter, we'll be showing more features.

There's more...
All HTTP status codes can be checked on this web page: https:/ / httpstatuses. com/ . They
are also described in the httplib module with convenient constant names, such as OK,
NOT_FOUND, or FORBIDDEN.

The most famous error status code is arguably 404, which happens when a
URL is not found. Try it out by doing
requests.get('http://www.columbia.edu/invalid').

A request can use the HTTPS protocol (secure HTTP). It is equivalent, but ensures that the
contents of the request and response are private. requests handles it transparently.

Any website that handles any private information will use HTTPS to
ensure that the information has not leaked out. HTTP is vulnerable to
someone eavesdropping. Use HTTPS where available.

See also
The Installing third-party packages recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Parsing HTML recipe

Building Your First Web Scraping Application Chapter 3

[75]

Parsing HTML
Downloading raw text or a binary file is a good starting point, but the main language of the
web is HTML.

HTML is a structured language, defining different parts of a document such as headers and
paragraphs. HTML is also hierarchical, defining sub-elements. The ability to parse raw text
into a structured document is basically to be able to extract information automatically from
a web page. For example, some text can be relevant if enclosed in a particular class
div or after a header h3 tag.

Getting ready
We'll use the excellent Beautiful Soup module to parse the HTML text into a memory object
that can be analyzed. We need to use the beautifulsoup4 package to use the latest
Python 3 version that is available. Add the package to your requirements.txt and install
the dependencies in the virtual environment:

$ echo "beautifulsoup4==4.6.0" >> requirements.txt
$ pip install -r requirements.txt

How to do it...
Import BeautifulSoup and requests:1.

>>> import requests
>>> from bs4 import BeautifulSoup

Set up the URL of the page to download and retrieve it:2.

>>> URL = 'http://www.columbia.edu/~fdc/sample.html'
>>> response = requests.get(URL)
>>> response
<Response [200]>

Parse the downloaded page:3.

>>> page = BeautifulSoup(response.text, 'html.parser')

Building Your First Web Scraping Application Chapter 3

[76]

Obtain the title of the page. See that it is the same as what's displayed in the4.
browser:

>>> page.title
<title>Sample Web Page</title>
>>> page.title.string
'Sample Web Page'

Find all the h3 elements in the page, to determine the existing sections:5.

>>> page.find_all('h3')
[<h3>CONTENTS</h3>, <h3>1.
Creating a Web Page</h3>, <h3>2. HTML
Syntax</h3>, <h3>3. Special Characters</h3>,
<h3>4. Converting Plain Text to HTML</h3>, <h3>5. Effects</h3>, <h3>6.
Lists</h3>, <h3>7. Links</h3>, <h3>8. Tables</h3>, <h3>9. Installing
Your Web Page on the Internet</h3>, <h3>10. Where to
go from here</h3>]

Extract the text on the section links. Stop when you reach the next <h3> tag:6.

>>> link_section = page.find('a', attrs={'name': 'links'})
>>> section = []
>>> for element in link_section.next_elements:
... if element.name == 'h3':
... break
... section.append(element.string or '')
...
>>> result = ''.join(section)
>>> result
'7. Links\n\nLinks can be internal within a Web page (like to\nthe
Table of ContentsTable of Contents at the top), or they\ncan be to
external web pages or pictures on the same website, or they\ncan be to
websites, pages, or pictures anywhere else in the world.\n\n\n\nHere is
a link to the Kermit\nProject home pageKermit\nProject home
page.\n\n\n\nHere is a link to Section 5Section 5 of this
document.\n\n\n\nHere is a link to\nSection 4.0Section 4.0\nof the C-
Kermit\nfor Unix Installation InstructionsC-Kermit\nfor Unix
Installation Instructions.\n\n\n\nHere is a link to a picture:\nCLICK
HERECLICK HERE to see it.\n\n\n'

Notice that there are no HTML tags; it's all raw text.

Building Your First Web Scraping Application Chapter 3

[77]

How it works...
The first step is to download the page. Then, the raw text can be parsed, as in step 3. The
resulting page object contains the parsed information.

The html.parser parser is the default one, but for specific operations it
can have problems. For example, for big pages it can be slow, or has issue
rendering highly dynamic web pages. You can use other parsers, such
as, lxml, which is much faster, or html5lib, which will be closer to how
a browser operates, including dynamic changes produced by HTML5.
They are external modules that will need to be added to the
requirements.txt file.

BeautifulSoup allows us to search for HTML elements. It can search for the first one with
.find() or return a list with .find_all(). In step 5, it searched for a specific tag <a> that
had a particular attribute, name=link. After that, it kept iterating on .next_elements
until it finds the next h3 tag, which marks the end of the section.

The text of each element is extracted and finally composed into a single text. Note the or
that avoids storing None, returned when an element has no text.

HTML is highly versatile, and can have multiple structures. The case
presented in this recipe is typical, but other options on dividing sections
can be grouping related sections inside a big <div> tag or other elements,
or even raw text. Some experimentation will be required until you find the
specific process to extract the juicy bits on a web page. Don't be afraid to
try!

There's more...
Regexes can be used as well as input in the .find() and .find_all() methods. For
example, this search uses the h2 and h3 tags:

>>> page.find_all(re.compile('^h(2|3)'))
[<h2>Sample Web Page</h2>, <h3>CONTENTS</h3>,
<h3>1. Creating a Web Page</h3>, <h3>2. HTML Syntax</h3>, <h3>3. Special
Characters</h3>, <h3>4. Converting Plain Text to
HTML</h3>, <h3>5. Effects</h3>, <h3>6. Lists</h3>, <h3>7. Links</h3>,

Building Your First Web Scraping Application Chapter 3

[78]

<h3>8. Tables</h3>, <h3>9.
Installing Your Web Page on the Internet</h3>, <h3>10. Where to go from here</h3>]

Another useful find parameter is including the CSS class with the class_ parameter. This
will be shown later in the book.

The full Beautiful Soup documentation can be found here: https:/ /www. crummy. com/
software/BeautifulSoup/ bs4/ doc/ .

See also
The Installing third-party packages recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Introducing regular expressions recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Downloading web pages recipe

Crawling the web
Given the nature of hyperlink pages, starting from a known place and following links to
other pages is a very important tool in the arsenal when scraping the web.

To do so, we crawl a page looking for a small phrase, and will print any paragraph that
contains it. We will search only in pages that belong to the same site. I.e. only URLs starting
with www.somesite.com. We won't follow links to external sites.

Getting ready
This recipe builds on the introduced concepts, so it will download and parse the pages to
search for links and continue downloading.

When crawling the web, remember to set limits when downloading. It's
very easy to crawl over too many pages. As anyone checking Wikipedia
can confirm, the internet is potentially limitless.

Building Your First Web Scraping Application Chapter 3

[79]

We'll use as an example a prepared example, available in the GitHub repo: https:/ /
github.com/PacktPublishing/ Python- Automation- Cookbook/ tree/ master/ Chapter03/
test_site. Download the whole site and run the included script.

$ python simple_delay_server.py

This serves the site in the URL http://localhost:8000. You can check it on a browser.
It's a simple blog with three entries. Most of it is uninteresting, but we added a couple of
paragraphs that contain the keyword python.

Building Your First Web Scraping Application Chapter 3

[80]

How to do it...
The full script, crawling_web_step1.py, is available in GitHub at the1.
following link: https:/ /github. com/PacktPublishing/ Python- Automation-
Cookbook/ blob/ master/ Chapter03/ crawling_ web_ step1. py. The most relevant
bits are displayed here:

...

def process_link(source_link, text):
 logging.info(f'Extracting links from {source_link}')
 parsed_source = urlparse(source_link)
 result = requests.get(source_link)
 # Error handling. See GitHub for details
 ...
 page = BeautifulSoup(result.text, 'html.parser')
 search_text(source_link, page, text)
 return get_links(parsed_source, page)

def get_links(parsed_source, page):
 '''Retrieve the links on the page'''
 links = []
 for element in page.find_all('a'):
 link = element.get('href')
 # Validate is a valid link. See GitHub for details
 ...
 links.append(link)
 return links

Search for references to python, to return a list with URLs that contain it and the2.
paragraph. Notice there are a couple of errors because of broken links:

$ python crawling_web_step1.py https://localhost:8000/ -p python
Link http://localhost:8000/: --> A smaller article , that contains a
reference to Python
Link
http://localhost:8000/files/5eabef23f63024c20389c34b94dee593-1.html: -
-> A smaller article , that contains a reference to Python
Link
http://localhost:8000/files/33714fc865e02aeda2dabb9a42a787b2-0.html: -
-> This is the actual bit with a python reference that we are
interested in.
Link http://localhost:8000/files/archive-september-2018.html: --> A
smaller article , that contains a reference to Python
Link http://localhost:8000/index.html: --> A smaller article , that
contains a reference to Python

Building Your First Web Scraping Application Chapter 3

[81]

Another good search term is crocodile. Try it out:3.

$ python crawling_web_step1.py http://localhost:8000/ -p crocodile

How it works...
Let's see each of the components of the script:

A loop that goes through all the found links, in the main function:1.

Note that there's a retrieval limit of 10 pages, and it's checking that any new link
to add is not added already.

Note these two things are limits. We won't download the same link twice
and we'll stop at some point.

Downloading and parsing the link, in the process_link function:2.

It downloads the file, and checks that the status is correct to skip errors such as
broken links. It also checks that the type (as described in Content-Type) is a
HTML page to skip PDFs and other formats. And finally, it parses the raw HTML
into a BeautifulSoup object.

It also parses the source link using urlparse, so later, in step 4, it can skip all the
references to external sources. urlparse divides a URL into its composing
elements:

>>> from urllib.parse import urlparse
>>> >>>
urlparse('http://localhost:8000/files/b93bec5d9681df87e6e8d5703ed7cd81-
2.html')
ParseResult(scheme='http', netloc='localhost:8000',
path='/files/b93bec5d9681df87e6e8d5703ed7cd81-2.html', params='',
query='', fragment='')

Building Your First Web Scraping Application Chapter 3

[82]

It finds the text to search, in the search_text function:3.

It searches the parsed object for the specified text. Note the search is done as a
regex and only in the text. It prints the resulting matches, including
source_link, referencing the URL where the match was found:

for element in page.find_all(text=re.compile(text)):
 print(f'Link {source_link}: --> {element}')

The get_links function retrieves all links on a page: 4.

It searches in the parsed page all <a> elements, and retrieves the href elements,
but only elements that have such href elements and that are a fully qualified
URL (starting with http). This removes links that are not a URL, such as a '#'
link, or that are internal to the page.

An extra check is done to check they have the same source as the original link,
then they are registered as valid links. The netloc attribute allows to detect that
the link comes from the same URL domain than the parsed URL generated in step
2.

We won't follow links that point to a different address (for example, a
http:/ / www. google. com one).

Finally, the links are returned, where they'll be added to the loop described in
step 1.

There's more...
Further filters could be enforced, for example, discarding all links that end in .pdf,
meaning they are PDF files:

In get_links
if link.endswith('pdf'):
 continue

Building Your First Web Scraping Application Chapter 3

[83]

The use of Content-Type can also be determined to parse the returned object in different
ways. A PDF result (Content-Type: application/pdf) won't have a valid
response.text object to be parsed, but it can be parsed in other ways. The same is valid
for other types, such as a CSV file (Content-Type: text/csv) or a ZIP file that may need
to be decompressed (Content-Type: application/zip). We'll see how to deal with
those later.

See also
The Downloading web pages recipe
The Parsing HTML recipe

Subscribing to feeds
RSS is probably the biggest secret of the internet. While its moment of glory seemed to be
during the 2000s, and now it's not in the spotlight anymore, it allows easy subscription to
websites. It is present in lots of places, and it's incredibly useful.

At its core, RSS is a way of presenting a succession of ordered references (typically articles,
but also other elements such as podcast episodes or YouTube publications) and a
publishing time. This makes for a very natural way of knowing what articles are new since
the last check, as well as presenting some structured data about them, such as the title and a
summary.

In this recipe, we will present the feedparser module, and determine how to obtain data
from an RSS feed.

RSS is not the only available feed format. There's also a format called
Atom, but both are very much equivalent. feedparser is also capable of
parsing it, so both can be used indistinctly.

Building Your First Web Scraping Application Chapter 3

[84]

Getting ready
We need to add the feedparser dependency to our requirements.txt file and reinstall
it:

$ echo "feedparser==5.2.1" >> requirements.txt
$ pip install -r requirements.txt

Feed URLs can be found on almost all pages that deal with publications, including blogs,
news, podcasts, and so on. Sometimes they are very easy to find, but sometimes they are a
little bit hidden. Search by feed or RSS.

Most newspapers and news agencies has their RSS feeds divided by themes. We'll use as
example to parse The New York Times main page feed, http:/ /rss. nytimes. com/
services/xml/rss/ nyt/ HomePage. xml. There are more feeds available in the main feed
page: https://archive. nytimes. com/ www.nytimes. com/ services/ xml/rss/ index. html.

Please note the feeds may be subjected to terms and conditions of use. In
the New York Times case, they are described at the end of the main feed
page.

Please note that this feed changes quite often, meaning that the linked entries will change
from the examples in this book.

How to do it...
Import the feedparser module, as well as datetime, delorean, and1.
requests:

import feedparser
import datetime
import delorean
import requests

Parse the feed (it will be downloaded automatically) and check when it was last2.
updated. Feed information, like the title of the feed, can be obtained in the feed
attribute:

>>> rss =
feedparser.parse('http://rss.nytimes.com/services/xml/rss/nyt/HomePage.
xml')

Building Your First Web Scraping Application Chapter 3

[85]

>>> rss.updated
'Sat, 02 Jun 2018 19:50:35 GMT'

Get the entries that are newer than six hours:3.

>>> time_limit = delorean.parse(rss.updated) -
datetime.timedelta(hours=6)
>>> entries = [entry for entry in rss.entries if
delorean.parse(entry.published) > time_limit]

There will be fewer entries than the total ones, because some of the returned4.
entries will be older than six hours:

>>> len(entries)
10
>>> len(rss.entries)
44

Retrieve information about the entries, such as the title. The full entry URL is5.
available as link. Explore the available information in this particular feed:

>>> entries[5]['title']
'Loose Ends: How to Live to 108'
>>> entries[5]['link']
'https://www.nytimes.com/2018/06/02/opinion/sunday/how-to-live-to-108.h
tml?partner=rss&emc=rss'
>>> requests.get(entries[5].link)
<Response [200]>

How it works...
The parsed feed object contains the information of the entries, as well as general
information about the feed itself, such as when it was updated. The feed information can
be found in the feed attribute:

>>> rss.feed.title
'NYT > Home Page'

Each of the entries work as a dictionary, so the fields are easy to retrieve. They can also be
accessed as attributes, but treating them as keys allows us to get all the available fields:

>>> entries[5].keys()
dict_keys(['title', 'title_detail', 'links', 'link', 'id',
'guidislink', 'media_content', 'summary', 'summary_detail',
'media_credit', 'credit', 'content', 'authors', 'author',
'author_detail', 'published', 'published_parsed', 'tags'])

Building Your First Web Scraping Application Chapter 3

[86]

The basic strategy when dealing with feeds is to parse them and go through the entries,
performing a quick check on whether they are interesting or not, for example, by checking
the description or summary. If they are download the whole page using the link field. Then,
to avoid rechecking entires, store the latest publication date and next time, only check
newer entries.

There's more...
The full feedparser documentation can be found here: https:/ /pythonhosted. org/
feedparser/.

The information available can differ from feed to feed. In the New York Times example,
there's a tag field with tag information, but this is not standard. As a minimum, entries will
have a title, a description, and a link.

RSS feeds are also a great way of curating your own selection of news
sources. There are great feed readers for that.

See also
The Installing third-party packages recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Downloading web pages recipe

Accessing web APIs
Rich interfaces can be created through the web, allowing powerful interactions through
HTTP. The most common interface is through RESTful APIs using JSON. These text-based
interfaces are easy to understand and to program, and use common technologies that are
language agnostic, meaning they can be accessed in any programming language that has
an HTTP client module, including, of course, Python.

Building Your First Web Scraping Application Chapter 3

[87]

Formats other than JSON are used, such as XML, but JSON is a very
simple and readable format that translates very well into Python
dictionaries (and other language equivalents). JSON is, by far, the most
common format in RESTful APIs at the moment. Learn more about JSON
here: https:/ /www. json. org/.

The strict definition of RESTful requires some characteristics, but a more informal
definition could be accessing resources through URLs. This means a URL represents a
particular resource, such as an article in a newspaper or a property on a real estate site.
Resources can then be manipulated through HTTP methods (GET to view, POST to create,
PUT/PATCH to edit, and DELETE to delete) to manipulate them.

Proper RESTful interfaces need to have certain characteristics, and are a
way of creating interfaces that is not strictly restricted to HTTP interfaces.
You can read more about it here: https:/ /codewords. recurse. com/
issues/ five/ what- restful- actually- means.

Using requests is very easy with them, as it includes native JSON support.

Getting ready
To demonstrate how to operate RESTful APIs, we'll use the example site https:/ /
jsonplaceholder.typicode. com/ . It simulates a common case with posts, comments, and
other common resources. We will use posts and comments. The URLs to use will be as
follows:

The collection of all posts
/posts
A single post. X is the ID of the post
/posts/X
The comments of post X
/posts/X/comments

The site returns the adequate result to each of them. Pretty handy!

Because it is a test site, data won't be created, but the site will return all
the correct responses.

Building Your First Web Scraping Application Chapter 3

[88]

How to do it...
Import requests:1.

>>> import requests

Get the list of all posts and display the latest post:2.

>>> result = requests.get('https://jsonplaceholder.typicode.com/posts')
>>> result
<Response [200]>
>>> result.json()
List of 100 posts NOT DISPLAYED HERE
>>> result.json()[-1]
{'userId': 10, 'id': 100, 'title': 'at nam consequatur ea labore ea
harum', 'body': 'cupiditate quo est a modi nesciunt soluta\nipsa
voluptas error itaque dicta in\nautem qui minus magnam et distinctio
eum\naccusamus ratione error aut'}

Create a new post. See the URL of the new created resource. The call also returns3.
the resource:

>>> new_post = {'userId': 10, 'title': 'a title', 'body': 'something
something'}
>>> result =
requests.post('https://jsonplaceholder.typicode.com/posts',
 json=new_post)
>>> result
<Response [201]>
>>> result.json()
{'userId': 10, 'title': 'a title', 'body': 'something something', 'id':
101}
>>> result.headers['Location']
'http://jsonplaceholder.typicode.com/posts/101'

Notice that the POST request to create the resource returns 201, which is the
proper status for created.

Fetch an existing post with GET:4.

>>> result =
requests.get('https://jsonplaceholder.typicode.com/posts/2')
>>> result
<Response [200]>
>>> result.json()
{'userId': 1, 'id': 2, 'title': 'qui est esse', 'body': 'est rerum
tempore vitae\nsequi sint nihil reprehenderit dolor beatae ea dolores

Building Your First Web Scraping Application Chapter 3

[89]

neque\nfugiat blanditiis voluptate porro vel nihil molestiae ut
reiciendis\nqui aperiam non debitis possimus qui neque nisi nulla'}

Use PATCH to update its values. Check the returned resource:5.

>>> update = {'body': 'new body'}
>>> result =
requests.patch('https://jsonplaceholder.typicode.com/posts/2',
json=update)
>>> result
<Response [200]>
>>> result.json()
{'userId': 1, 'id': 2, 'title': 'qui est esse', 'body': 'new body'}

How it works...
Two kinds of resources are typically accessed. Single resources
(https://jsonplaceholder.typicode.com/posts/X) and collections
(https://jsonplaceholder.typicode.com/posts):

Collections accept GET to retrieve them all and POST to create a new resource
Single elements accept GET to get the element, PUT and PATCH to edit, and
DELETE to remove them

All the available HTTP methods can be called in requests. In the previous recipes, we
used .get(), but .post(), .patch(), .put(), and .delete() are available.

The returned response object has a .json() method that decodes the result from JSON.

Equally, to send information, a json argument is available. This encodes a dictionary into
JSON and sends it to the server. The data needs to follow the format of the resource or an
error may be raised.

GET and DELETE don't require data, while PATCH, PUT, and POST do
require data.

Building Your First Web Scraping Application Chapter 3

[90]

The referred resource will be returned, and its URL is available in the header location. This
is useful when creating a new resource, where its URL is not known beforehand.

The difference between PATCH and PUT is that the latter replaces the
whole resource, while the first does a partial update.

There's more...
RESTful APIs are very powerful, but also have huge variability. Please check the
documentation of the specific API to learn about its details.

See also
The Downloading web pages recipe
The Installing third-party packages recipe in Chapter 1, Let Us Begin Our
Automation Journey

Interacting with forms
A common element present in web pages is forms. Forms are a way of sending values into
a web page, for example, to create a new comment on a blog post, or to submit a purchase.

Browsers present the forms so you can input values and send them in a single action after
pressing the submit or equivalent button. We'll see how to create this action
programatically in this recipe.

Be aware that sending data to a site is normally more sensible than
receiving data from it. For example, sending automatic comments to a
website is very much the definition of spam. This means that it can be
more difficult to automate and include security measures. Double-check
that what you're trying to achieve is a valid, ethical use case.

Building Your First Web Scraping Application Chapter 3

[91]

Getting ready
We'll work against the test server, https:/ /httpbin. org/ forms/ post, which allows us to
send a test form and sends back the submitted information.

The following is an example form to order a pizza:

You can fill the form manually and see it return the information in JSON format, including
extra information such as the browser use.

Building Your First Web Scraping Application Chapter 3

[92]

The following is the frontend of the web form generated:

Building Your First Web Scraping Application Chapter 3

[93]

The following image is the back end of the web form generated:

We need to analyze the HTML to see the accepted data for the form. Checking the source
code, it shows this:

Source code

Building Your First Web Scraping Application Chapter 3

[94]

Check the name of the inputs, custname, custtel, custemail, size (a radio option),
topping (a multiselection checkbox), delivery (time), and comments.

How to do it...
Import requests, BeautifulSoup, and re modules:1.

>>> import requests
>>> from bs4 import BeautifulSoup
>>> import re

Retrieve the form page, parse it, and print the input fields. Check that the posting2.
URL is /post (not /forms/post):

>>> response = requests.get('https://httpbin.org/forms/post')
>>> page = BeautifulSoup(response.text)
>>> form = soup.find('form')
>>> {field.get('name') for field in
form.find_all(re.compile('input|textarea'))}
{'delivery', 'topping', 'size', 'custemail', 'comments', 'custtel',
'custname'}

Note textarea is a valid input, as well as defined in the HTML format.

Prepare the data to be posted as a dictionary. Check the values are the same as3.
defined in the form:

>>> data = {'custname': "Sean O'Connell", 'custtel': '123-456-789',
'custemail': 'sean@oconnell.ie', 'size': 'small', 'topping': ['bacon',
'onion'], 'delivery': '20:30', 'comments': ''}

Post the values and check that the response is the same as returned in the4.
browser:

>>> response = requests.post('https://httpbin.org/post', data)
>>> response
<Response [200]>
>>> response.json()
{'args': {}, 'data': '', 'files': {}, 'form': {'comments': '',
'custemail': 'sean@oconnell.ie', 'custname': "Sean O'Connell",
'custtel': '123-456-789', 'delivery': '20:30', 'size': 'small',
'topping': ['bacon', 'onion']}, 'headers': {'Accept': '*/*', 'Accept-
Encoding': 'gzip, deflate', 'Connection': 'close', 'Content-Length':

Building Your First Web Scraping Application Chapter 3

[95]

'140', 'Content-Type': 'application/x-www-form-urlencoded', 'Host':
'httpbin.org', 'User-Agent': 'python-requests/2.18.3'}, 'json': None,
'origin': '89.100.17.159', 'url': 'https://httpbin.org/post'}

How it works...
requests directly accepts to send data in the proper way. By default, it sends the POST
data in the application/x-www-form-urlencoded format.

Compare that with the Accessing web APIs recipe, where the data is
explicitly sent in JSON format using the argument json. This makes the
Content-Type be application/json instead of application/x-www-
form-urlencoded.

The key aspect here is to respect the format of the form and the possible values that can
return an error if incorrect, typically a 400 error.

There's more...
Other than following the format of forms and inputting valid values, the main problem
when working with forms is the multiple ways of preventing spam and abusive behavior.

A very common limitation is to ensure that you downloaded the form before submitting it,
to avoid submitting multiple forms or Cross-Site Request Forgery (CSRF).

CSRF, which means producing a malicious call from a page to another
taking advantage that your browser is authenticated, is a serious
problem. For example, entering in a puppies site that take advantage of
you being logged into your bank page to perform operations "on your
behalf". Here is a good description of it: https:/ /stackoverflow. com/ a/
33829607. New techniques in browsers help with these issues by default.

To obtain the specific token, you need to first download the form, as shown in the recipe,
obtain the value of the CSRF token, and resubmit it. Note that the token can have different
names; this is just an example:

>>> form.find(attrs={'name': 'token'}).get('value')
'ABCEDF12345'

Building Your First Web Scraping Application Chapter 3

[96]

See also
The Downloading web pages recipe
The Parsing HTML recipe

Using Selenium for advanced interaction
Sometimes, nothing short of the real thing will work. Selenium is a project to achieve
automation in web browsers. It's conceived as a way of automatic testing, but it also can be
used to automate interactions with a site.

Selenium can control Safari, Chrome, Firefox, Internet Explorer, or Microsoft Edge, though
it requires installing a specific driver for each case. We'll use Chrome.

Getting ready
We need to install the right driver for Chrome, called chromedriver. It is available
here: https://sites. google. com/ a/ chromium. org/ chromedriver/ . It is available for most
platforms. It also requires that you have Chrome installed: https:/ /www. google. com/
chrome/.

Add the selenium module to requirements.txt and install it:

$ echo "selenium==3.12.0" >> requirements.txt
$ pip install -r requirements.txt

How to do it...
Import Selenium, start a browser, and load the form page. A page will open1.
reflecting the operations:

>>> from selenium import webdriver
>>> browser = webdriver.Chrome()
>>> browser.get('https://httpbin.org/forms/post')

Building Your First Web Scraping Application Chapter 3

[97]

Note the banner with Chrome is being controlled by automated test
software.

Add a value in the Customer name field. Remember that it is called custname:2.

>>> custname = browser.find_element_by_name("custname")
>>> custname.clear()
>>> custname.send_keys("Sean O'Connell")

The form will update:

Select the pizza size as medium:3.

>>> for size_element in browser.find_elements_by_name("size"):
... if size_element.get_attribute('value') == 'medium':
... size_element.click()
...
>>>

This will change the pizza size ratio box.

Add bacon and cheese:4.

>>> for topping in browser.find_elements_by_name('topping'):
... if topping.get_attribute('value') in ['bacon', 'cheese']:
... topping.click()
...
>>>

Building Your First Web Scraping Application Chapter 3

[98]

Finally, the checkboxes will appear as marked:

Submit the form. The page will submit and the result will be displayed:5.

>>> browser.find_element_by_tag_name('form').submit()

The form will be submitted and the result from the server will be displayed:

Close the browser:6.

>>> browser.quit()

Building Your First Web Scraping Application Chapter 3

[99]

How it works...
Step 1 in the How to do it… section shows how to create a Selenium page and go to a
particular URL.

Selenium works in a similar way to Beautiful Soup. Select the adequate element, and then
manipulate it. The selectors in Selenium work in a similar way to those in Beautiful Soup,
with the most common ones being find_element_by_id,
find_element_by_class_name, find_element_by_name,
find_element_by_tag_name, and find_element_by_css_selector. There are
equivalent find_elements_by_X that return a list instead of the first found
element (find_elements_by_tag_name, find_elements_by_name, and more). This is
also useful when checking whether the element is there or not. If there's no elements,
find_element will raise an error while find_elements will return an empty list.

The data on the elements can be obtained through .get_attribute() for HTML
attributes (such as the values on the form elements) or .text.

The elements can be manipulated by simulating sending keystrokes to input text, with the
method .send_keys(), clicked with .click() or submitted with .submit() if they
accept that. .submit() will search on a form for the proper submission, and .click()
will select/deselect in the same way that a click of the mouse will do.

Finally, step 6 closes the browser.

There's more...
Here is the full Selenium documentation: http:/ /selenium- python. readthedocs. io/.

For each of the elements, there's extra information that can be extracted, such as
.is_displayed() or .is_selected(). Text can be searched using
.find_element_by_link_text() and .find_element_by_partial_link_text().

Building Your First Web Scraping Application Chapter 3

[100]

Sometimes, opening a browser can be inconvenient. An alternative is to start the browser in
headless mode and manipulate it from there, like this:

>>> from selenium.webdriver.chrome.options import Options
>>> chrome_options = Options()
>>> chrome_options.add_argument("--headless")
>>> browser = webdriver.Chrome(chrome_options=chrome_options)
>>> browser.get('https://httpbin.org/forms/post')

The page won't be displayed. But a screenshot can be saved anyway with the following
line:

>>> browser.save_screenshot('screenshot.png')

See also
The Parsing HTML recipe
The Interact with forms recipe

Accessing password-protected pages
Sometimes a web page is not open to the public, but protected in some way. The most basic
aspect is to use basic HTTP authentication, which is integrated into virtually every web
server, and it's a user/password schema.

Getting ready
We can test this kind of authentication in https:/ /httpbin. org.

It has a path, /basic-auth/{user}/{password}, which forces authentication, with the
user and password stated. This is very handy for understanding how authentication works.

Building Your First Web Scraping Application Chapter 3

[101]

How to do it...
Import requests:1.

>>> import requests

Make a GET request to the URL with the wrong credentials. Notice that we set the2.
credentials on the URL to be user and psswd:

>>> requests.get('https://httpbin.org/basic-auth/user/psswd',
 auth=('user', 'psswd'))
<Response [200]>

Use the wrong credentials to return a 401 status code (Unauthorized):3.

>>> requests.get('https://httpbin.org/basic-auth/user/psswd',
 auth=('user', 'wrong'))
<Response [401]>

The credentials can be also passed directly in the URL, separated by a colon and4.
an @ symbol before the server, like this:

>>>
requests.get('https://user:psswd@httpbin.org/basic-auth/user/psswd')
<Response [200]>
>>>
requests.get('https://user:wrong@httpbin.org/basic-auth/user/psswd')
<Response [401]>

How it works...
As HTTP basic authentication is supported everywhere, support from requests is very
easy.

Steps 2 and 4 in the How to do it… section show how to provide the proper password. Step 3
shows what happens when the password is the wrong one.

Remember to always use HTTPS to ensure that the sending of the
password is kept secret. If you use HTTP, the password will be sent in the
open over the web.

Building Your First Web Scraping Application Chapter 3

[102]

There's more...
Adding the user and password to the URL works on the browser as well. Try to access the
page directly to see a box displayed asking for the username and password:

User credentials page

When using the URL containing the user and password,
https://user:psswd@httpbin.org/basic-auth/user/psswd, the dialog does not
appear and it authenticates automatically.

If you need to access multiple pages, you can create a session in requests and set the
authentication parameters to avoid having to input them everywhere:

>>> s = requests.Session()
>>> s.auth = ('user', 'psswd')
>>> s.get('https://httpbin.org/basic-auth/user/psswd')
<Response [200]>

See also
The Downloading web pages recipe
The Accessing Web APIs recipe

Building Your First Web Scraping Application Chapter 3

[103]

Speeding up web scraping
Most of the time spent downloading information from web pages is usually spent waiting.
A request goes from our computer to whatever server will process it, and until the response
is composed and comes back to our computer, we cannot do much about it.

During the execution of the recipes in the book, you'll notice there's a wait involved in
requests calls, normally of around one or two seconds. But computers can do other stuff
while waiting, including making more requests at the same time. In this recipe, we will see
how to download a list of pages in parallel and wait until they are all ready. We will use an
intentionally slow server to show the point.

Getting ready
We'll get code to crawl and search for keywords, making use of the futures capabilities of
Python 3 to download multiple pages at the same time.

A future is an object that represents the promise of a value. This means that you
immediately receive an object while the code is being executed in the background. Only,
when specifically requesting for its .result() the code blocks until getting it.

To generate a future, you need a background engine, called executor. Once
created, submit a function and parameters to it to retrieve a future. The retrieval of the
result can be delayed as long as necessary, allowing the generation of several futures in a
row, and waiting until all are finished, executing them in parallel, instead of creating one,
wait until it finishes, creating another, and so on.

There are several ways to create an executor; in this recipe, we'll use
ThreadPoolExecutor, which will use threads.

We'll use as an example a prepared example, available in the GitHub repo: https:/ /
github.com/PacktPublishing/ Python- Automation- Cookbook/ tree/ master/ Chapter03/
test_site. Download the whole site and run the included script

$ python simple_delay_server.py -d 2

Building Your First Web Scraping Application Chapter 3

[104]

This serves the site in the URL http://localhost:8000. You can check it on a browser.
It's s simple blog with three entries. Most of it is uninteresting, but we added a couple of
paragraphs that contain the keyword python. The parameter -d 2 makes the server
intentionally slow, simulating a bad connection.

How to do it...
Write the following script, speed_up_step1.py. The full code is available in1.
GitHub under the Chapter03: https:/ / github. com/ PacktPublishing/ Python-
Automation- Cookbook/ blob/ master/ Chapter03/ speed_ up_step1. py directory.
Here are only the most relevant parts. It is based on crawling_web_step1.py:

...
def process_link(source_link, text):
 ...
 return source_link, get_links(parsed_source, page)
...

def main(base_url, to_search, workers):
 checked_links = set()
 to_check = [base_url]
 max_checks = 10

 with concurrent.futures.ThreadPoolExecutor(max_workers=workers) as
executor:
 while to_check:
 futures = [executor.submit(process_link, url, to_search)
 for url in to_check]
 to_check = []
 for data in concurrent.futures.as_completed(futures):
 link, new_links = data.result()

 checked_links.add(link)
 for link in new_links:
 if link not in checked_links and link not in
to_check:
 to_check.append(link)

 max_checks -= 1
 if not max_checks:
 return

if __name__ == '__main__':

Building Your First Web Scraping Application Chapter 3

[105]

 parser = argparse.ArgumentParser()
 ...
 parser.add_argument('-w', type=int, help='Number of workers',
 default=4)
 args = parser.parse_args()

 main(args.u, args.p, args.w)

Notice the differences in the main function. Also, there's an extra parameter2.
added (number of concurrent workers), and the function process_link now
returns the source link.
Run the crawling_web_step1.py script to get a time baseline. Notice the3.
output has been removed here for clarity:

$ time python crawling_web_step1.py http://localhost:8000/
... REMOVED OUTPUT
real 0m12.221s
user 0m0.160s
sys 0m0.034s

Run the new script with one worker, which is slower than the original one:4.

$ time python speed_up_step1.py -w 1
... REMOVED OUTPUT
real 0m16.403s
user 0m0.181s
sys 0m0.068s

Increase the number of workers:5.

$ time python speed_up_step1.py -w 2
... REMOVED OUTPUT
real 0m10.353s
user 0m0.199s
sys 0m0.068s

Adding more workers decreases the time:6.

$ time python speed_up_step1.py -w 5
... REMOVED OUTPUT
real 0m6.234s
user 0m0.171s
sys 0m0.040s

Building Your First Web Scraping Application Chapter 3

[106]

How it works...
The main engine to create the concurrent requests is the main function. Notice that the rest
of the code is basically untouched (other than returning the source link in the
process_link function).

This change is actually quite common when adapting for concurrency.
Concurrent tasks need to return all the relevant data, as they cannot rely
on an ordered context.

This is the relevant part of the code that handles the concurrent engine:

with concurrent.futures.ThreadPoolExecutor(max_workers=workers) as
executor:
 while to_check:
 futures = [executor.submit(process_link, url, to_search)
 for url in to_check]
 to_check = []
 for data in concurrent.futures.as_completed(futures):
 link, new_links = data.result()

 checked_links.add(link)
 for link in new_links:
 if link not in checked_links and link not in to_check:
 to_check.append(link)

 max_checks -= 1
 if not max_checks:
 return

The with context creates a pool of workers, specifying its number. Inside, a list of futures
containing all the URLs to retrieve is created. The .as_completed() function returns the
futures that are finished, and then there's some work dealing with obtaining newly found
links and checking whether they need to be added to be retrieved or not. This process is
similar to the one presented in the Crawling the web recipe.

The process starts again until enough links have been retrieved or there are no links to
retrieve. Note that the links are retrieved in batches; the first time, the base link is processed
and all links are retrieved. In the second iteration, all those links will be requested. Once
they are all downloaded, a new batch will be processed.

Building Your First Web Scraping Application Chapter 3

[107]

When dealing with concurrent requests, keep in mind that they can
change order between two executions. If a request takes a little more or a
little less time, that can affect the ordering of the retrieved information.
Because we stop after downloading 10 pages, that also means that the 10
pages could be different.

There's more...
The full futures documentation in Python can be found here: https:/ /docs. python. org/
3/library/concurrent. futures. html.

As you can see in steps 4 and 5 in the How to do it…
section, properly determining the number of workers can require some
tests. Some numbers can make the process slower, due the increase in
management. Do not be afraid to experiment!

In the Python world, there are other ways to make concurrent HTTP requests. There's a
native request module that allows us to work with futures, called requests-futures. It
can be found here: https:/ /github. com/ ross/ requests- futures.

Another alternative is to use asynchronous programming. This way of working has
recently gotten a lot of attention, as it can be very efficient in situations when dealing with
many concurrent calls, but the resulting way of coding is different from the traditional way
and requires some time to get used to. Python includes the asyncio module to work that
way, and there's a good module called aiohttp to work with HTTP requests. You can find
more information about aiohttp here: https:/ /aiohttp. readthedocs. io/ en/stable/
client_quickstart. html.

A good introduction to asynchronous programming can be found in this article: https:/ /
djangostars.com/ blog/ asynchronous- programming- in- python- asyncio/ .

See also
The Crawling the web recipe
The Downloading web pages recipe

4
Searching and Reading Local

Files
In this chapter, we'll cover the following recipes:

Crawling and searching directories
Reading text files
Dealing with encodings
Reading CSV files
Reading log files
Reading file metadata
Reading images
Reading PDF files
Reading Word documents
Scanning documents for a keyword

Introduction
In this chapter, we will deal with the basic operations to read files, starting with searching
and opening files in directories and subdirectories. Then, we'll describe some of the most
common file types and how to read them, including formats such as raw text files, PDFs,
and Word documents.

The last recipe will combine them all, showing how to search recursively in a directory for a
word in different kinds of files.

Searching and Reading Local Files Chapter 4

[109]

Crawling and searching directories
In this recipe, we'll learn how to recursively scan a directory to get all the files contained
there. The files can be of a particular kind, or just all of them.

Getting ready
Let's start by creating a test directory with some file information:

$ mkdir dir
$ touch dir/file1.txt
$ touch dir/file2.txt
$ mkdir dir/subdir
$ touch dir/subdir/file3.txt
$ touch dir/subdir/file4.txt
$ touch dir/subdir/file5.pdf
$ touch dir/file6.pdf

All the files will be empty; we will use them in this recipe only to discover them. Notice
there are four files that have a .txt extension, and two that have a .pdf extension.

The files are also available in the GitHub repository here: https:/ /
github. com/ PacktPublishing/ Python- Automation- Cookbook/ tree/
master/ Chapter04/ documents/ dir.

Enter the created dir directory:

$ cd dir

How to do it...
Print all the filenames in the dir directory and subdirectories:1.

>>> import os
>>> for root, dirs, files in os.walk('.'):
... for file in files:
... print(file)
...
file1.txt
file2.txt
file6.pdf
file3.txt

Searching and Reading Local Files Chapter 4

[110]

file4.txt
file5.pdf

Print the full path of the files, joining with the root:2.

>>> for root, dirs, files in os.walk('.'):
... for file in files:
... full_file_path = os.path.join(root, file)
... print(full_file_path)
...
./dir/file1.txt
./dir/file2.txt
./dir/file6.pdf
./dir/subdir/file3.txt
./dir/subdir/file4.txt
./dir/subdir/file5.pdf

Print only the .pdf files:3.

>>> for root, dirs, files in os.walk('.'):
... for file in files:
... if file.endswith('.pdf'):
... full_file_path = os.path.join(root, file)
... print(full_file_path)
...
./dir/file6.pdf
./dir/subdir/file5.pdf

Print only files that contain an even number:4.

>>> import re
>>> for root, dirs, files in os.walk('.'):
... for file in files:
... if re.search(r'[13579]', file):
... full_file_path = os.path.join(root, file)
... print(full_file_path)
...
./dir/file1.txt
./dir/subdir/file3.txt
./dir/subdir/file5.pdf

Searching and Reading Local Files Chapter 4

[111]

How it works...
os.walk() goes through the whole directory and all subdirectories, returning all the files.
It returns a tuple with the specific directory, the subdirectories that depends directly, and
all the files:

>>> for root, dirs, files in os.walk('.'):
... print(root, dirs, files)
...
. ['dir'] []
./dir ['subdir'] ['file1.txt', 'file2.txt', 'file6.pdf']
./dir/subdir [] ['file3.txt', 'file4.txt', 'file5.pdf']

The os.path.join() function allows us to cleanly join two paths, such as the base path
and the file.

As files are returned as pure strings, any kind of filtering can be done, as in step 3. In step 4,
the full power of regular expressions can be used to filter.

In the next recipe, we'll deal with the content of the files, and not just the filename.

There's more...
The returned files are not opened or modified in anyway. This operation is read-only. Files
can be opened as usual, and described as in the following recipes.

Be aware that changing the structure of the directory while walking it may
affect the results. If you need to store any file while working, for example,
when copying or moving a file, it's usually a good idea to store it in a
different directory.

The os.path module has other interesting functions. The most useful, other than join(),
are probably:

os.path.abspath(), which returns the absolute path of a file
os.path.split(), which splits the path between directory and file:

>>> os.path.split('/a/very/long/path/file.txt')
('/a/very/long/path', 'file.txt')

os.path.exists(), to return whether a file exists or not on the filesystem

Searching and Reading Local Files Chapter 4

[112]

The full documentation about os.path can be found here: https:/ /docs. python. org/3/
library/os.path. html. Another module, pathlib, can be used for higher-level access, in
an object-oriented way: https:/ /docs. python. org/ 3/ library/ pathlib. html.

As demonstrated in step 4, multiple ways of filtering can be used. All of the string
manipulations shown in Chapter 1, Let Us Begin Our Automation Journey can be used.

See also
The Introducing regular expressions recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Reading text files recipe

Reading text files
After searching for a particular file, we'll probably follow up by opening it and reading it.
Text files are very simple yet very powerful files. They store data in plain text, without
complicated binary formats.

Text file support is provided natively in Python, and it's easy to consider it a collection of
lines.

Getting ready
We'll read the zen_of_python.txt file, containing the Zen of Python by Tim Peters, which
is a collection of aphorisms that very well describe the design principles behind Python. It
is available in the GitHub repository here: https:/ /github. com/ PacktPublishing/ Python-
Automation-Cookbook/ blob/ master/ Chapter04/ documents/ zen_of_ python. txt:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

Searching and Reading Local Files Chapter 4

[113]

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

The Zen of Python is described in PEP-20 here: https:/ /www. python. org/dev/ peps/ pep-
0020/.

The Zen of Python can be displayed in any Python interpreter by calling
import this.

How to do it...
Open and print the whole file, line by line (the result is not displayed):1.

>>> with open('zen_of_python.txt') as file:
... for line in file:
... print(line)
...
[RESULT NOT DISPLAYED]

Open the file and print any line containing the string should:2.

>>> with open('zen_of_python.txt', 'r') as file:
... for line in file:
... if 'should' in line.lower():
... print(line)
...
Errors should never pass silently.
There should be one-- and preferably only one --obvious way to do it.

Searching and Reading Local Files Chapter 4

[114]

Open the file and print the first line containing the word better:3.

>>> with open('zen_of_python.txt', 'rt') as file:
... for line in file:
... if 'better' in line.lower():
... print(line)
... break
...
Beautiful is better than ugly.

How it works...
To open a file in text mode, use the open() function. This returns a file object that then
can be iterated over to return it line by line, as shown in step 1 of the How to do it… section.

The with context manager is a very convenient way of dealing with files, as it will close
them after finishing its use (leaving the block). It will do so even if there's an exception
raised.

Step 2 shows how to iterate and filter the lines based in what lines are applicable for our
tasks. The lines are returned as strings that can be filtered in multiple ways, as described
before.

Reading the whole file may not be required, as shown in step 3. Because iterating through
the file line by line will be reading the file as you go, you can stop at any time, avoiding
reading the rest of the file. For a small file such as our example, that's not very relevant, but
for long files, this can reduce memory use and time.

There's more...
The with context manager is the preferred way of dealing with files, but it's not the only
one. You may also open and close them manually, like this:

>>> file = open('zen_of_python')
>>> content = file.read()
>>> file.close()

Searching and Reading Local Files Chapter 4

[115]

Note the .close() method, to ensure that the file is closed and to free resources related
to opening a file. The .read() method reads the whole file in one go, instead of line by
line.

The .read() method also accepts a size parameter in bytes that limits the
size of the data read. For example, file.read(1024) will return up to 1
KB of information. The next call to .read() will continue from that point.

Files are opened in a particular mode. Modes define a combination of read/write as well as
text or binary data. By default, files are opened in read-only and text mode, which are
described as 'r' (step 2) or 'rt' (step 3).

More modes will be explored in other recipes.

See also
The Crawling and searching directories recipe
The Dealing with encodings recipe

Dealing with encodings
Text files can be present in different encodings. In recent years, the situation has greatly
improved, but there are still compatibility problems when working with different systems.

There's a difference between raw data in a file and a string object in
Python. The string object has been transformed from whatever encoding
the file contains into a native string. Once it is in this format, it may need
to be stored in different encodings. By default, Python works with the
defined by the OS, which in modern operating systems is UTF-8. This is a
highly compatible encoding, but you may need to save files in a different
one.

Searching and Reading Local Files Chapter 4

[116]

Getting ready
We prepared two files in the GitHub repository that store the string 20£ in two different
encodings. One in usual UTF8 and another in ISO 8859-1, another common encoding. The
files are available in GitHub under the Chapter04/documents directory, with the names
example_iso.txt and example_utf8.txt:

https://github.com/ PacktPublishing/ Python- Automation- Cookbook

We'll use the Beautiful Soup module, presented in the Parsing HTML recipe in Chapter
3, Building Your First Web Scraping Application.

How to do it...
Open the example_utf8.txt file and display its content:1.

>>> with open('example_utf8.txt') as file:
... print(file.read())
...
20£

Try to open the example_iso.txt file, which will raise an exception:2.

>>> with open('example_iso.txt') as file:
... print(file.read())
...
Traceback (most recent call last):
 ...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa3 in position 2:
invalid start byte

Open the example_iso.txt file with the proper encoding:3.

>>> with open('example_iso.txt',
 encoding='iso-8859-1') as file:
... print(file.read())
...
20£

Open the utf8 file and save its content in an iso-8859-1 file:4.

>>> with open('example_utf8.txt') as file:
... content = file.read()
>>> with open('example_output_iso.txt', 'w',
 encoding='iso-8859-1') as file:

Searching and Reading Local Files Chapter 4

[117]

... file.write(content)

...
4

Finally, read from the new file in the proper format to ensure it is correctly saved:5.

>>> with open('example_output_iso.txt',
 encoding='iso-8859-1') as file:
... print(file.read())
...
20£

How it works...
Steps 1 and 2 in the How to do it… section are very straightforward. In step 3, we add an
extra parameter, encoding, to specify that the file needs to be opened in something
different to UTF-8.

Python accepts a lot of standard encodings right out of the box. Check
here for all of them and their aliases: https:/ /docs. python. org/ 3/
library/ codecs. html#standard- encodings.

In step 4, we create a new file in ISO-8859-1 and write to it as usual. Notice the 'w'
parameter, which specifies to open it for writing and in text mode.

Step 5 is a confirmation that the file is properly saved.

There's more...
This recipe assumes that we know the encoding a file is in. But sometimes we're not sure
about that. Beautiful Soup, a module to parse HTML, can try to detect what encoding a
particular file has.

Automatically detecting what encoding a file has may be, well,
impossible, as there are potentially an infinte number of encodings. But
we'll check the usual encodings that should cover 90% of the real world
cases. Just remember that the easiest way of knowing for sure is to ask
whomever created the file in the first place.

Searching and Reading Local Files Chapter 4

[118]

To do so, we'll need to open the file to read in binary format with the 'rb' parameter, to
then pass the binary content to the UnicodeDammit module of Beautiful Soup, like this:

>>> from bs4 import UnicodeDammit
>>> with open('example_output_iso.txt', 'rb') as file:
... content = file.read()
...
>>> suggestion = UnicodeDammit(content)
>>> suggestion.original_encoding
'iso-8859-1'
>>> suggestion.unicode_markup
'20£\n'

The encoding can then be inferred. Though .unicode_markup returns the decoded string,
it's better to use this suggestion only once, to then open the file in our automated task with
the proper encoding.

See also
The Manipulating strings recipe in Chapter 1, Let Us Begin Our Automation Journey
The Parsing HTML recipe in Chapter 3, Building Your First Web Scraping
Application

Reading CSV files
Some text files contain tabular data separated by commas. This is a convenient way of
creating structured data, instead of using proprietary, more complex formats such as Excel
or others. These files are called Comma Separated Values, or CSV, files and most
spreadsheet packages also export to it.

Getting ready
We've prepared a CSV file using the data for the 10 top movies by theatre attendance, as
described by this page: http:/ /www. mrob. com/ pub/ film- video/ topadj. html.

Searching and Reading Local Files Chapter 4

[119]

We copied the first ten elements of the table into a spreadsheet program (Numbers) and
exported the file as a CSV. The file is available in the GitHub repository in the
Chapter04/documents directory as top_films.csv:

How to do it...
Import the csv module:1.

>>> import csv

Open the file, create a reader, and iterate through it to show the tabular data of2.
all rows (only three rows are shown):

>>> with open('top_films.csv') as file:
... data = csv.reader(file)
... for row in data:
... print(row)
...
['Rank', 'Admissions\n(millions)', 'Title (year) (studio)',
'Director(s)']
['1', '225.7', 'Gone With the Wind (1939)\xa0(MGM)', 'Victor Fleming,
George Cukor, Sam Wood']
['2', '194.4', 'Star Wars (Ep. IV: A New Hope) (1977)\xa0(Fox)',
'George Lucas']
...

Searching and Reading Local Files Chapter 4

[120]

['10', '118.9', 'The Lion King (1994)\xa0(BV)', 'Roger Allers, Rob
Minkoff']

Open the file and use DictReader to structure the data, including the header:3.

>>> with open('top_films.csv') as file:
... data = csv.DictReader(file)
... structured_data = [row for row in data]
...
>>> structured_data[0]
OrderedDict([('Rank', '1'), ('Admissions\n(millions)', '225.7'),
('Title (year) (studio)', 'Gone With the Wind (1939)\xa0(MGM)'),
('Director(s)', 'Victor Fleming, George Cukor, Sam Wood')])

 Each of the items in structured_data is a full dictionary that contains each of4.
the values:

>>> structured_data[0].keys()
odict_keys(['Rank', 'Admissions\n(millions)', 'Title (year) (studio)',
'Director(s)'])
>>> structured_data[0]['Rank']
'1'
>>> structured_data[0]['Director(s)']
'Victor Fleming, George Cukor, Sam Wood'

How it works...
Notice that the file needs to be read, and we use a with context manager. This ensures that
the file is closed at the end of the block.

As shown in step 2 from the How to do it… section, the csv.reader class allows us to
structure the returning lines of code by subdividing them as lists, following the format of
the table data. Notice how all the values are described as strings. csv.reader does not
understand whether the first line is a header or not.

For a more structured read of the file, in step 3 we use csv.DictReader, which by default
reads the first row as a header defining the fields described later, and then converts each of
the rows into dictionaries with those fields.

Sometimes, like in this case, the names of the fields as described in the file
can be a little verbose. Don't be afraid to translate the dictionary on an
extra step into more manageable field names.

Searching and Reading Local Files Chapter 4

[121]

There's more...
As CSV is a very loosely defined interpretation, there are several ways that the data can be
stored. This is represented in the csv module as dialects. For example, the values can be
delimited by commas, semicolons, or tabs. The list of default accepted dialects can be
displayed by calling csv.list_dialect.

By default, the dialect will be Excel, which is the most common one. Even
other spreadsheets will commonly use it.

But dialects can also be inferred from the file itself through the Sniffer class. The Sniffer
class analyzes a sample of the file (or the whole file) and returns a dialect object to allow
reading in the proper way.

Notice that the file is open with no new lines, to not make any assumptions about it:

>>> with open('top_films.csv', newline='') as file:
... dialect = csv.Sniffer().sniff(file.read())

The dialect can then be used when opening the reader. Note the newline again, as the
dialect will split the lines correctly:

>>> with open('top_films.csv', newline='') as file:
... reader = csv.reader(file, dialect)
... for row in reader:
... print(row)

The full csv module documentation can be found here: https:/ /docs. python. org/ 3.6/
library/csv.html.

See also
The Dealing with encodings recipe
The Reading text files recipe

Searching and Reading Local Files Chapter 4

[122]

Reading log files
Another common structured text file format is log files. Log files consist of rows of logs,
which are a line of text with a particular format. Typically, each one will have a time when
it happened, so the file is an ordered collection of events.

Getting ready
The example_log.log file with five sales logs can be obtained from the GitHub repository
here: https://github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter04/documents/ example_ logs. log.

The format is the following:

[<Timestamp in iso format>] - SALE - PRODUCT: <product id> - PRICE:
$<price of the sale>

We'll use the Chapter01/price_log.py file to process each log into an object.

How to do it...
Import PriceLog:1.

>>> from price_log import PriceLog

Open the log file and parse all logs:2.

>>> with open('example_logs.log') as file:
... logs = [PriceLog.parse(log) for log in file]
...
>>> len(logs)
5
>>> logs[0]
<PriceLog (Delorean(datetime=datetime.datetime(2018, 6, 17, 22, 11, 50,
268396), timezone='UTC'), 1489, 9.99)>

Determine the total income by all sales:3.

>>> total = sum(log.price for log in logs)
>>> total
Decimal('47.82')

Searching and Reading Local Files Chapter 4

[123]

Determine how many units have been sold of each product_id:4.

>>> from collections import Counter
>>> counter = Counter(log.product_id for log in logs)
>>> counter
Counter({1489: 2, 4508: 1, 8597: 1, 3086: 1})

Filter the logs to find all occurrences of selling product ID 1489:5.

>>> logs = []
>>> with open('example_logs.log') as file:
... for log in file:
... plog = PriceLog.parse(log)
... if plog.product_id == 1489:
... logs.append(plog)
...
>> len(logs)
2
>>> logs[0].product_id, logs[0].timestamp
(1489, Delorean(datetime=datetime.datetime(2018, 6, 17, 22, 11, 50,
268396), timezone='UTC'))
>>> logs[1].product_id, logs[1].timestamp
(1489, Delorean(datetime=datetime.datetime(2018, 6, 17, 22, 11, 50,
268468), timezone='UTC'))

How it works...
As each of the logs is a single line, we open the file and go one by one, parsing each of
them. The parsing code is available on price_log.py. Check it for more details.

In Step 2 in the How to do it… section, we open the file and process each of the lines to create
a log list with all our processed logs. Then, we can produce aggregation operations, as in
the next steps.

Step 3 shows how to aggregate all values, in this case summing the price of all items sold
over the log file, to get the total revenue.

Step 4 uses the Counter to determine the amount of each item in the file log. This returns a
dictionary-like object with the values to count and the number of times they appear.

Filtering can also be done in a line-by-line approach, as shown in step 5. This is similar to
the other filtering in the recipes of this chapter.

Searching and Reading Local Files Chapter 4

[124]

There's more...
Remember that you can stop processing a file as soon as you have all the data you need.
This may be a good strategy if the file is very big, as is usually the case with log files.

Counter is a great tool to quickly count a list. See the Python documentation here for more
details: https:// docs. python. org/ 2/ library/ collections. html#counter- objects. You
can get the ordered items by calling the following:

>>> counter.most_common()
[(1489, 2), (4508, 1), (8597, 1), (3086, 1)]

See also
The Using a third party tool—parse recipe in Chapter 1, Let Us Begin Our
Automation Journey
The Reading text files recipe

Reading file metadata
File metadata is everything associated with a particular file that is not the data itself. That
means parameters such as the size of the file, the creation date, or its permissions.

Browsing through that data is important, for example, to filter files older than a date, or
find all files bigger than a value in KBs. In this recipe, we'll see how to access the file
metadata in Python.

Getting ready
We'll use the zen_of_python.txt file, available in the GitHub repository (https:/ /
github.com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter04/
documents/zen_of_ python. txt). As you can see by using the ls command, the file has 856
bytes, and, in this example, it was created on June 14:

$ ls -lrt zen_of_python.txt
-rw-r--r--@ 1 jaime staff 856 14 Jun 21:22 zen_of_python.txt

On your computer the dates may vary, based on when you downloaded the code.

Searching and Reading Local Files Chapter 4

[125]

How to do it...
Import os and datetime:1.

>>> import os
>>> from datetime import datetime

Retrieve the stats of the zen_of_python.txt file:2.

>>> stats = os.stat(('zen_of_python.txt')
>>> stats
os.stat_result(st_mode=33188, st_ino=15822537, st_dev=16777224,
st_nlink=1, st_uid=501, st_gid=20, st_size=856, st_atime=1529461935,
st_mtime=1529007749, st_ctime=1529007757)

Get the size of the file, in bytes:3.

>>> stats.st_size
856

Obtain when the file was last modified:4.

>>> datetime.fromtimestamp(stats.st_mtime)
datetime.datetime(2018, 6, 14, 21, 22, 29)

Obtain when the file was last accessed:5.

>>> datetime.fromtimestamp(stats.st_atime)
datetime.datetime(2018, 6, 20, 3, 32, 15)

How it works...
os.stats returns a stats object that represents the metadata stored in the filesystem. The
metadata includes:

The size of the file, in bytes, as shown in step 3 in the How to do it… section,
using st_size
When the file content was last modified, as shown in step 4, using st_mtime
When the file was last read (accessed), as shown in step 5, using st_atime

The times are returned as timestamps, so in steps 4 and 5 we create a datetime object from
the timestamps to better access the data.

All these values can be used to filter the files.

Searching and Reading Local Files Chapter 4

[126]

Notice you don't need to open the file with open() to read its metadata.
Detecting whether a file has been changed after a known value will be
quicker than comparing its content, so you can take advantage of that for
comparison.

There's more...
To obtain the stats one by one, there are also convenience functions available in os.path,
which follow the pattern get<value>:

>>> os.path.getsize('zen_of_python.txt')
856
>>> os.path.getmtime('zen_of_python.txt')
1529531584.0
>>> os.path.getatime('zen_of_python.txt')
1529531669.0

The value is specified in the UNIX timestamp format (seconds since January 1, 1970).

Notice calling these three functions will be slower than
calling os.stats and processing the results. Also, returned stats can be
inspected to detect the available values.

The values described in the recipe are available for all filesystems, but there are more that
can be used.

For example, to obtain the creation date of a file, you can use the st_birthtime parameter
for MacOS or st_mtime in Windows.

st_mtime is always available, but its meaning changes between systems.
In Unix systems, it will change when the content is modified, so it's not a
reliable time of creation.

os.stat will follow symbolic links. If you want to get the stats of a symbolic link,
use os.lstat().

Check the full documentation about all available stats here: https:/ /docs. python. org/ 3.
6/library/os.html#os. stat_ result.

Searching and Reading Local Files Chapter 4

[127]

See also
The Reading text files recipe
The Reading images recipe

Reading images
Probably the most common data that is not text is image data. Images had their own set of
specific metadata that can be read to filter values or perform other operations.

A main challenge is dealing with multiple formats and different metadata definitions. We'll
show in this recipe how to get information from both a JPEG and PNG, and how the same
information can be encoded differently.

Getting ready
The best general toolkit for dealing with images in Python is, arguably, Pillow. This module
allows you to easily read files in the most common formats, as well as perform operations
on them. Pillow started as a fork of PIL (Python Imaging Library), a previous module that
became stagnant some years ago.

We will also use the xmltodict module to transform some data in XML to a more
convenient dictionary. Add both modules to requirements.txt and reinstall into the
virtual environment:

$ echo "Pillow==5.1.0" >> requirements.txt
$ echo "xmltodict==0.11.0" >> requirements.txt
$ pip install -r requirements.txt

The metadata information in photo files is defined in the EXIF (Exchangeable Image
File) format. EXIF is a standard to store information about pictures, including things like
what camera took the picture, when it was taken, GPS on where, exposure, focal length,
color info, and so on.

You can get a good summary here: https:/ / www.slrphotographyguide.
com/what- is- exif- metadata/ . All the information is optional, but
virtually all digital cameras and processing software will store some data.
Because of the privacy concerns, parts of it, like the exact location, can be
disabled.

Searching and Reading Local Files Chapter 4

[128]

The following images will be used for this recipe, and are available to download in the
GiHub repository (https:/ /github. com/ PacktPublishing/ Python- Automation- Cookbook/
tree/master/Chapter04/ images):

photo-dublin-a1.jpg

photo-dublin-a2.png

photo-dublin-b.png

Two of them, photo-dublin-a1.jpg and photo-dublin-a2.png, are the same photo,
but while the first is the raw picture the second one has been retouched to slightly change
the colors and crop it. Notice one is in JPEG format and the other in PNG. The other
one, photo-dublin-b.png , is a different picture. Both pictures were taken in Dublin,
with the same phone camera, on two different days.

While Pillow understands how JPG files store the EXIF info directly, PNG files store XMP
info, a more generic standard that can contain EXIF info.

More info about XMP can be obtained here: https:/ / www.adobe. com/
devnet/ xmp. html. For the most part, it defines an XML tree structure
that's relatively readable in raw.

To further complicate it, XMP is a subset of RDF, which is a standard describing the way of
encoding the information.

If EFIX, XMP, and RDF sounds confusing, well, it's because they are.
Ultimately, they are just names to store the values we are interested in. We
can inspect the specifics of the names using Python introspection tools
and check exactly how the data is structured and what the name of the
parameter we are looking for is.

As the GPS information is stored in different formats, we've included in the GitHub
repository a file called gps_conversion.py, here: https:/ /github. com/
PacktPublishing/Python- Automation- Cookbook/ blob/ master/ Chapter04/ gps_
conversion.py. This includes the functions exif_to_decimal and rdf_to_decimal,
which will transform both formats into decimals to compare them.

Searching and Reading Local Files Chapter 4

[129]

How to do it...
Import the modules and functions to use in this recipe:1.

>>> from PIL import Image
>>> from PIL.ExifTags import TAGS, GPSTAGS
>>> import xmltodict
>>> from gps_conversion import exif_to_decimal, rdf_to_decimal

Open the first photo:2.

>>> image1 = Image.open('photo-dublin-a1.jpg')

Get the width, height, and format of the file:3.

>>> image1.height
3024
>>> image1.width
4032
>>> image1.format
'JPEG'

Retrieve the EXIF information of the image, and process it for a convenient4.
dictionary. Show the camera, the lens used, and when it was taken:

>>> exif_info_1 = {TAGS.get(tag, tag): value
 for tag, value in image1._getexif().items()}
>>> exif_info_1['Model']
'iPhone X'
>>> exif_info_1['LensModel']
'iPhone X back dual camera 4mm f/1.8'
>>> exif_info_1['DateTimeOriginal']
'2018:04:21 12:07:55'

Open the second image and obtain the XMP info:5.

>>> image2 = Image.open('photo-dublin-a2.png')
>>> image2.height
2630
>>> image2.width
3943
>>> image2.format
'PNG'
>>> xmp_info = xmltodict.parse(image2.info['XML:com.adobe.xmp'])

Searching and Reading Local Files Chapter 4

[130]

Obtain the RDF description field, which contains all the values we are looking6.
for. Retrieve the model (a TIFF value), the lens model (an EXIF value), and the
creation date (an XMP value). Check the values are the same as in step 4, even if
the file is different:

>>> rdf_info_2 = xmp_info['x:xmpmeta']['rdf:RDF']['rdf:Description']
>>> rdf_info_2['tiff:Model']
'iPhone X'
>>> rdf_info_2['exifEX:LensModel']
'iPhone X back dual camera 4mm f/1.8'
>>> rdf_info_2['xmp:CreateDate']
'2018-04-21T12:07:55'

Obtain the GPS information in both pictures, transform into an equivalent7.
format, and check that they are the same. Notice that the resolution is not the
same, but they match up to the fourth decimal point:

>>> gps_info_1 = {GPSTAGS.get(tag, tag): value
 for tag, value in exif_info_1['GPSInfo'].items()}
>>> exif_to_decimal(gps_info_1)
('N53.34690555555556', 'W6.247797222222222')
>>> rdf_to_decimal(rdf_info_2)
('N53.346905', 'W6.247796666666667')

Open the third image and obtain the creation date and GPS info, and check it8.
doesn't match the other photo, although it is close (the second and third decimals
are not the same):

>>> image3 = Image.open('photo-dublin-b.png')
>>> xmp_info = xmltodict.parse(image3.info['XML:com.adobe.xmp'])
>>> rdf_info_3 = xmp_info['x:xmpmeta']['rdf:RDF']['rdf:Description']
>>> rdf_info_3['xmp:CreateDate']
'2018-03-08T18:16:57'
>>> rdf_to_decimal(rdf_info_3)
('N53.34984166666667', 'W6.260388333333333')

How it works...
Pillow is able to interpret files in most common languages, and open them as images in JPG
format, as shown in step 2 in the How to do it… section.

Searching and Reading Local Files Chapter 4

[131]

The Image object contains the basic information about the size and format of the file, and is
displayed in step 3. The info property contains information that is dependent on the
format.

The EXIF metadata for JPG files can be parsed with the ._getexif() method, but then it
needs to be translated properly, as it uses the raw binary definition. For example, the
number 42,036 corresponds to the LensModel property. Fortunately, there's a definition of
all tags in the PIL.ExifTags module. We translate the dictionary to readable tags in the
step 4 to obtain a more readable dictionary.

Step 5 opens a PNG format, which has the same properties related to size, but the metadata
is stored in XML/RDF format and needs to be parsed with the help of xmltodict. Step 6
shows how to navigate this metadata to extract the same information as in the JPG format.
The data is the same, as both files come from the same original picture, even if the images
are different.

xmltodict has some issues when trying to parse data that's not in XML
format. Check that the input is valid XML.

Step 7 extracted the GPS information for both images, which is stored in different ways,
and shows they are the same (although the precision is different because of the way it is
encoded).

Step 8 shows the information on a different photo.

There's more...
Pillow also has a lot of functionality around modifying pictures. It is very easy to resize or
make simple modifications to a file, such as rotating it. You can find the complete Pillow
documentation here: https:/ /pillow. readthedocs. io.

Pillow allow a lot of operations with images. Not only simple operations
such as resizing or transforming one format into another, but also things
like cropping the image, applying color filters, or generating animated
GIFs. If you're interested in image processing using Python, it is definitely
something to take a look at.

Searching and Reading Local Files Chapter 4

[132]

The GPS coordinates in the recipe are stated in DMS (Degrees, Minutes, Seconds), DDM
(Degrees, Decimal Minutes), and transformed into DD (Decimal Degrees). You can find
more about the different GPS formats here: http:/ /www. ubergizmo. com/ how- to/read- gps-
coordinates/. You'll also find how to search the exact locations of the pictures there, in
case you're curious.

A more advanced use of reading image files is to try to process them for OCR (Optical
Character Recognition). This means automatically detecting text in an image and extracting
and processing it. The open source module tesseract allows you to do this, and it can be
used with Python and Pillow.

You need to install tesseract in your system (https:/ /github. com/tesseract- ocr/
tesseract/wiki), and the pytesseract Python module (using pip install
pytesseract). You can download a file with clear text, called photo-text.jpg, from the
GitHub repository at https:/ /github. com/ PacktPublishing/ Python- Automation-
Cookbook/blob/master/ Chapter04/ images/ photo- text. jpg:

>>> from PIL import Image
>>> import pytesseract
>>> pytesseract.image_to_string(Image.open('photo-text.jpg'))
'Automate!'

OCR can be difficult if the text is not very clear in the image, or it is mixed with images, or
it uses a distinctive font. There's an example of that in the photo-dublin-a-
text.jpg file, (available in the GitHub repository at https:/ /github. com/
PacktPublishing/Python- Automation- Cookbook/ blob/ master/ Chapter04/ images/ photo-
dublin-a-text.jpg), which includes text over the picture:

>>> >>> pytesseract.image_to_string(Image.open('photo-dublin-a-
text.jpg'))
'fl\n\nAutomat'

More information about Tesseract is available at the following links:
https://github.com/ tesseract- ocr/ tesseract
https://github.com/ madmaze/ pytesseract

Properly importing files to OCR may require initial image processing for
better results. Image processing is out of scope for the objectives of this
book, but you may use OpenCV, which more powerful than Pillow. You
can process a file and then open it with Pillow: http:/ /opencv- python-
tutroals. readthedocs. io/ en/ latest/ py_ tutorials/ py_tutorials.
html.

Searching and Reading Local Files Chapter 4

[133]

See also
The Reading text files recipe
The Reading file metadata recipe
The Crawling and searching directories recipe

Reading PDF files
A common format for documents is PDF (Portable Document Format). It started as a
format to describe a document for any printer, so PDF is a format that ensures that the
document will be printed exactly as it shows, and therefore is a great way of guaranteeing
consistency. It has become a powerful standard for sharing documents, especially
documents that are read-only.

Getting ready
For this recipe, we are going to use the PyPDF2 module. We need to add it to our virtual
environment:

>>> echo "PyPDF2==1.26.0" >> requirements.txt
>>> pip install -r requirements.txt

In the GitHub directory Chapter03/documents, we have prepared two documents,
document-1.pdf and document-2.pdf, to use in this recipe. Note they contain mostly
Lorem Ipsum text, which is just placeholder text.

Lorem Ipsum text is commonly used in design to show text without
needing to create the content before the design. Learn more about it
here: https:/ /loremipsum. io/.

They are both the same test document, but the second one can only be opened with a
password. The password is automate.

How to do it...
Import the module:1.

>>> from PyPDF2 import PdfFileReader

Searching and Reading Local Files Chapter 4

[134]

Open the document-1.pdf file and create a PDF document object. Notice the file2.
needs to be open for the whole reading:

>>> file = open('document-1.pdf', 'rb')
>>> document = PdfFileReader(file)

Get the number of pages of the document, and check it is not encrypted:3.

>>> document.numPages
3
>>> document.isEncrypted
False

Get the creation date from the document info (2018-Jun-24 11:15:18), and4.
discover that it has been created with a Mac Quartz PDFContext:

>>> document.documentInfo['/CreationDate']
"D:20180624111518Z00'00'"
>>> document.documentInfo['/Producer']
'Mac OS X 10.13.5 Quartz PDFContext'

Get the first page, and read the text on it:5.

>>> document.pages[0].extractText()
'!A VERY IMPORTANT DOCUMENT \nBy James McCormac CEO Loose Seal Inc '

Do the same operation for the second page (redacted here):6.

>>> document.pages[1].extractText()
'"!This is an example of a test document that is stored in PDF format.
It contains some \nsentences to describe what it is and the it has lore
ipsum text.\n!"\nLorem ipsum dolor sit amet, consectetur adipiscing
elit. ...$'

Close the file and open document-2.pdf:7.

>>> file.close()
>>> file = open('document-2.pdf', 'rb')
>>> document = PdfFileReader(file)

Check the document is encrypted (it requires a password) and raises an error if8.
trying to access its content:

>>> document.isEncrypted
True
>>> document.numPages
...
PyPDF2.utils.PdfReadError: File has not been decrypted

Searching and Reading Local Files Chapter 4

[135]

Decrypt the file and access its content:9.

>>> document.decrypt('automate')
1
>>> document.numPages
3
>>> document.pages[0].extractText()
'!A VERY IMPORTANT DOCUMENT \nBy James McCormac CEO Loose Seal Inc '

Close the file to clean up:10.

>>> file.close()

How it works...
Once the document is open, as shown on steps 1 and 2 in the How to do it… section, the
document object provides access to the document.

The most interesting properties are the number of pages, available in .numPages, and each
of the pages, available in .pages, which can be accessed like a list.

Other data accessible is stored in .documentInfo, which stores metadata on the creator
and when it was created.

The information in .documentInfo is optional and sometimes not up-to-
date. It depends greatly on the tool used to generate the PDF.

Each of the page objects can get its text by calling .extractText(), which will return all
the text contained in the page, as done in steps 5 and 6. This method tries to extract all text,
but it has some limitations. For well-structured texts, such as our example, it works quite
well and the resulting text can be processed cleanly. Dealing with text in multiple columns
or located in strange positions, it may complicate working with it.

Notice that the PDF file needs to be open for the whole operation, instead
of using a with context operator. After leaving the with block, the file is
closed.

Steps 8 and 9 shows how to deal with encrypted files. You can detect whether a file is
encrypted or not with .isEncrypted, and then decrypt it with the .decrypt method,
giving the password.

Searching and Reading Local Files Chapter 4

[136]

There's more...
PDF is such a flexible format that it is very standard, but that also means that it can be
difficult to parse and process.

While most PDF files contain text information, it is not uncommon that they contain
images. This, for example, happens very often with scanned documents. This means that
the information is stored as a collection of images, instead of in text. This makes it difficult
to extract the data; we end up having to resolve to methods such as OCR to parse the
images into text.

PyPDF2 does not provide a good interface to deal with images. You may need to transform
the PDF into a collection of images and then process them. Most PDF readers can do it, or
you can use a command-line tool such as pdftooppm (https:/ /linux. die. net/ man/ 1/
pdftoppm) or QPDF (see the following). See the Reading images recipe for ideas about OCR.

Some ways of encrypting files may not be understood by PyPDF2. It will generate
NotImplementedError: only algorithm code 1 and 2 are supported. If that
happens, you need to decrypt the PDF externally and open it once it is decrypted. You can
use QPDF to create a copy without the password, as follows:

$ qpdf --decrypt --password=PASSWORD encrypted.pdf output-decrypted.pdf

The full QPDF is available here: http:/ /qpdf. sourceforge. net/ files/ qpdf- manual. html.
QPDF is available in most package managers as well.

QPDF is capable of doing a lot of transformations and analyzing PDFs in-
depth. There are also bindings into Python on a module called pikepdf
(https:/ /pikepdf. readthedocs. io/ en/stable/). This module is more
difficult to use than PyPDF2 and it's not as straightforward for text
extraction, but it can be useful if other operations such as extracting
images from a PDF are required.

See also
The Reading text files recipe
The Crawling and searching directories recipe

Searching and Reading Local Files Chapter 4

[137]

Reading Word documents
Word documents (.docx) are another common kind of document that stores text. They
are typically generated with Microsoft Office, but other tools also produce compatible files.
They are probably the most common format to share files that need to be editable, but they
are also common for distributing documents.

We'll see in this recipe how to extract text information from a Word document.

Getting ready
We'll use the python-docx module to read and process Word documents:

>>> echo "python-docx==0.8.6" >> requirements.txt
>>> pip install -r requirements.txt

We have prepared a test file, available in the GitHub Chapter04/documents directory,
called document-1.docx, which we'll use with this recipe. Note that this document
follows the same Lorem Ipsun pattern that was described in the test document for the
recipe Reading PDF files recipe .

How to do it...
Import python-docx:1.

>> import docx

Open the document-1.docx file:2.

>>> doc = docx.Document('document-1.docx')

Check some of the metadata properties stored in core_properties:3.

>> doc.core_properties.title
'A very important document'
>>> doc.core_properties.keywords
'lorem ipsum'
>>> doc.core_properties.modified
datetime.datetime(2018, 6, 24, 15, 1, 7)

Searching and Reading Local Files Chapter 4

[138]

Check the number of paragraphs:4.

>>> len(doc.paragraphs)
58

Walk through the paragraphs to detect the ones that contain text. Notice not all5.
text is displayed here:

>>> for index, paragraph in enumerate(doc.paragraphs):
... if paragraph.text:
... print(index, paragraph.text)
...
30 A VERY IMPORTANT DOCUMENT
31 By James McCormac
32 CEO Loose Seal Inc
34
...
56 TITLE 2
57 ...

Obtain the text for paragraphs 30 and 31, which correspond to the title and6.
subtitle on the first page:

>>> doc.paragraphs[30].text
'A VERY IMPORTANT DOCUMENT'
>>> doc.paragraphs[31].text
'By James McCormac'

Each of the paragraphs has runs, which are sections of the text with different7.
properties. Check that the first text paragraph and run is in bold and the second
is in italics:

>>> doc.paragraphs[30].runs[0].italic
>>> doc.paragraphs[30].runs[0].bold
True
>>> doc.paragraphs[31].runs[0].bold
>>> doc.paragraphs[31].runs[0].italic
True

In this document, most of the paragraphs have only one run, but we have a good8.
example of different runs in paragraph 48. Display its text and the different
styles. For example, the word Word is in bold, and ipsum is in italics:

>>> [run.text for run in doc.paragraphs[48].runs]
['This is an example of a test document that is stored in ', 'Word', '
format', '. It contains some ', 'sentences', ' to describe what it is
and it has ', 'lore', 'm', ' ipsum', ' text.']

Searching and Reading Local Files Chapter 4

[139]

>>> run1 = doc.paragraphs[48].runs[1]
>>> run1.text
'Word'
>>> run1.bold
True
>>> run2 = doc.paragraphs[48].runs[8]
>>> run2.text
' ipsum'
>>> run2.italic
True

How it works...
The most important peculiarity of Word documents is that the data is structured in
paragraphs, instead of in pages. The size of the font, line size and other considerations may
make the number of pages change.

Most of the paragraphs are also typically empty, or include only new lines, tabs, or other
whitespace characters. It is a good idea to check when a paragraph is empty and skip it.

In the How to do it… section, step 2 opens the file and step 3 shows how to access the core
properties. These are properties that are defined in Word as document metadata, such as
the author or creation date.

This information needs to be taken with a grain of salt, as a lot of tools that
produce Word documents (but not Microsoft Office) won't necessarily fill
it. Double-check before using that information.

The paragraphs of the document can be iterated and have their text extracted in raw
format, as shown in step 6. This is information that doesn't include styling information and
it's typically the most useful one for processing the data automatically.

If the styling information is required, the runs can be used, as in steps 7 and 8. Each
paragraph can contain one or more runs, which are smaller units that share the same
styling. For example, if a sentence is Word1 word2 word3, there will be three runs, one with
italic text (Word1), another with underline (word2), and another with bold (word3). Even
more so, there can be intermediate runs with regular text that contains just the whitespaces,
making a total of 5 runs.

Searching and Reading Local Files Chapter 4

[140]

The styling can be detected individually on properties such as bold, italic, or underline.

The division in runs can quite complicated. Due to the way editors work
it, is not uncommon to have half-words, a split word in two runs,
sometimes with the same properties. Do not rely on the number of runs
and analyse the content. In particular, double-check if trying to ensure if a
part with a particular style is divided in two or more runs. A good
example is the words lore m (it should be lorem) in Step 8.

Be aware that, because Word documents are produced by so many sources, a lot of
properties may not be set up, leaving it to the tool on what specifics to use. For example, is
very common to keep the default font, which may mean that the font information is left
empty.

There's more...
Further style information can be found under the font attribute, such as small_caps or
size:

>>> run2.font.cs_italic
True
>>> run2.font.size
152400
>>> run2.font.small_caps

Normally focusing on the raw text, without paying attention to the style information is the
correct parsing. But sometimes a bold word in a paragraph, will have special significance. It
may be the header or the result you're looking for. Because it's highlighted, it likely is what
you're looking for! Keep that in mind when analysing documents.

You can find the whole python-docx documentation here: https:/ /python- docx.
readthedocs.io/en/ latest/ .

See also
The Reading text files recipe
The Reading PDF files recipe

Searching and Reading Local Files Chapter 4

[141]

Scanning documents for a keyword
In this recipe, we will join all the lessons of the previous recipes and will search the files in
the directory for a particular keyword. This is a recap of the rest of the recipes in this
chapter and includes a script that searches different kinds of files.

Getting ready
Be sure to include all the following modules in the requirements.txt file and install
them into your virtual environment:

beautifulsoup4==4.6.0
Pillow==5.1.0
PyPDF2==1.26.0
python-docx==0.8.6

Check that the directory to search has the following files (all are available in GitHub in the
Chapter04/documents directory). Note that file5.pdf and file6.pdf are copies of
document-1.pdf, for simplicity. file1.txt to file4.txt are empty files:

├── dir
│ ├── file1.txt
│ ├── file2.txt
│ ├── file6.pdf
│ └── subdir
│ ├── file3.txt
│ ├── file4.txt
│ └── file5.pdf
├── document-1.docx
├── document-1.pdf
├── document-2-1.pdf
├── document-2.pdf
├── example_iso.txt
├── example_output_iso.txt
├── example_utf8.txt
├── top_films.csv
└── zen_of_python.txt

Searching and Reading Local Files Chapter 4

[142]

We've prepared a script, scan.py, that will search for a word in all the .txt, .csv, .pdf,
and .docx files. The script is available in the Chapter04 directory of the GitHub
repository.

How to do it...
Refer to help -h for how to use the scan.py script:1.

$ python scan.py -h
usage: scan.py [-h] [-w W]

optional arguments:
 -h, --help show this help message and exit
 -w W Word to search

Search for the word the, which is present in most of the files:2.

$ python scan.py -w the
>>> Word found in ./document-1.pdf
>>> Word found in ./top_films.csv
>>> Word found in ./zen_of_python.txt
>>> Word found in ./dir/file6.pdf
>>> Word found in ./dir/subdir/file5.pdf

Search for the word lorem, only present in the PDF and docx files:3.

$ python scan.py -w lorem
>>> Word found in ./document-1.docx
>>> Word found in ./document-1.pdf
>>> Word found in ./dir/file6.pdf
>>> Word found in ./dir/subdir/file5.pdf

Search for the word 20£, only present in the two ISO files, with different4.
encodings:

$ python scan.py -w 20£
>>> Word found in ./example_iso.txt
>>> Word found in ./example_output_iso.txt

The search is case insensitive. Search for the word BETTER, only present in the5.
zen_of_python.txt file:

$ python scan.py -w BETTER
>>> Word found in ./zen_of_python.txt

Searching and Reading Local Files Chapter 4

[143]

How it works...
The file scan.py has the following elements:

An entry point that parses the input parameters and creates the help for the1.
command line.
A main function that walks through the directory and analyses each of the2.
files found. Based on their extension, it decides whether there's an available
function to process and search it.
An EXTENSION dictionary, which pairs the extensions with the function to search3.
them.
The search_txt, search_csv, search_pdf, and search_docx functions,4.
which process and search for the required word for each kind of file.

The comparison is case-insensitive, so the search word is transformed in lower case and, in
all comparisons, the text is transformed into lowercase.

Each of the search functions have their own peculiarities:

search_txt first opens the file to determine its encoding, using1.
UnicodeDammit, then it opens the file and reads it line by line. If the word is
found, it stops immediately and returns success.
search_csv opens the file in CSV, and iterates not only line by line, but also2.
column by column. As soon as the word is found, it returns.
search_pdf opens the file and exits if it is encrypted. It not, it goes page by3.
page, extracting the text and comparing it with the word. It returns as soon as it
finds a match.
search_docx opens the file and iterates through all its paragraphs for a match.4.
As soon as a match is found, the function returns.

Searching and Reading Local Files Chapter 4

[144]

There's more...
There are some extra ideas that could be implemented:

More search functions could be added. In this chapter, we went through log files
and images.
A similar structure could work for searching for files and returning only the last
10.
search_csv is not sniffing to detect the dialect. This could be added as well.
Reading is quite sequential. It should be possible to read the files in parallel,
analyzing them for faster returns, but be aware that reading files in parallel can
lead to sorting issues, as the files won't always be processed in the same order.

See also
The Crawling and searching directories recipe
The Reading text files recipe
The Dealing with encodings recipe
The Reading CSV files recipe
The Reading PDF files recipe
The Reading Word documents recipe

5
Generating Fantastic Reports

In this chapter, we will cover the following recipes:

Creating a simple report in plain text
Using templates for reports
Formatting text in Markdown
Writing a basic Word document
Styling a Word document
Generating structure in Word documents
Adding pictures to Word documents
Writing a simple PDF document
Structuring a PDF
Aggregating PDF reports
Watermarking and encrypting a PDF

Introduction
In this chapter, we'll see how to write documents and perform basic operations, such as
dealing with templates in different formats, such as plain text and Markdown. We'll spend
the most time with common, useful formats such as Word and PDF.

Creating a simple report in plain text
The most simple report is to generate some text and store it in a file.

Generating Fantastic Reports Chapter 5

[146]

Getting ready
For this recipe, we will generate a brief report in text format. The data to be stored will be in
a dictionary.

How to do it...
Import datetime:1.

>>> from datetime import datetime

Create the template with the report in text format:2.

>>> TEMPLATE = '''
Movies report

Date: {date}
Movies seen in the last 30 days: {num_movies}
Total minutes: {total_minutes}
'''

Create a dictionary with the values to store. Note this is the data that's going to3.
be presented in the report:

>>> data = {
 'date': datetime.utcnow(),
 'num_movies': 3,
 'total_minutes': 376,
}

Compose the report, adding the data to the template:4.

>>> report = TEMPLATE.format(**data)

Create a new file with the current date and store the report:5.

>>> FILENAME_TMPL = "{date}_report.txt"
>>> filename = FILENAME_TMPL.format(date=data['date'].strftime('%Y-%m-
%d'))
>>> filename
2018-06-26_report.txt
>>> with open(filename, 'w') as file:
... file.write(report)

Generating Fantastic Reports Chapter 5

[147]

Check the newly created report:6.

$ cat 2018-06-26_report.txt

Movies report

Date: 2018-06-26 23:40:08.737671
Movies seen in the last 30 days: 3
Total minutes: 376

How it works...
Steps 2 and 3 in the How to do it… section set up a simple template and add a dictionary
with all the data to be contained in the report. Then, in step 4, those two are combined into
a specific report.

In step 4, the dictionary is combined with a template. Notice that the keys
on the dictionary correspond to the parameters on the template. The trick
is to use the double star in the format call to decompress the dictionary,
passing each of the keys as a parameter to format().

In Step 5, the resulting report, a string, is stored in a newly created file, using the with
context manager. The open() function creates a new file, as stated in the opening mode, w,
and keeps it open during the block, which writes the data to the file. When exiting the
block, the file is properly closed.

The open modes determine how to open a file, whether it is to read or
write, and whether the file is in text or binary. The w mode opens the file
to write it, overwriting it if it already exists. Be careful to not to delete an
existing file by mistake!

Step 6 checks that the file has been created with the proper data.

Generating Fantastic Reports Chapter 5

[148]

There's more...
The filename is created with today's date to minimize the probability of overwriting values.
The format of the date, starting with the year and ending with the day, has been selected so
the files are sorted naturally in the correct order.

The with context manager will close the file even if there's an exception. It will raise
an IOError exception if there is.

Some of the common exceptions in writing could be a problem with
permissions, a full hard drive, or a path problem (for instance, trying to
write in a non-existent directory).

Note that a file may not be fully committed to disk until it is closed or explicitly flushed.
Generally, this is not a problem when dealing with files, but something to keep in mind if
trying to open a file twice, one for read and one for write.

See also
The Using templates for reports recipe
The Formatting text in Markdown recipe
The Aggregating PDF reports recipe

Using templates for reports
HTML is a very flexible format that can be used to present rich reports. While an HTML
template can be created by treating it as just text, there are tools that allow you to add better
handling of structured text. This detaches the template from the code as well, separating
the generation of the data from the representation of that data.

Generating Fantastic Reports Chapter 5

[149]

Getting ready
The tool used in this recipe, Jinja2, reads a file that contains the template and applies the
context to it. The context contains the data to be displayed.

We should start by installing the module:

$ echo "jinja2==2.20" >> requirements.txt
$ pip install -r requirements.txt

Jinja2 uses its own syntax, which is a mixture of HTML and Python. It is aimed at HTML
documents so it easily performs operations such as correctly escaping special characters.

In the GitHub repository, we've included a template file called jinja_template.html
with the template to use.

How to do it...
Import Jinja2 Template and datetime:1.

>>> from jinja2 import Template
>>> from datetime import datetime

Read the template from the files into memory:2.

>>> with open('jinja_template.html') as file:
... template = Template(file.read())

Create a context with the data to be displayed:3.

>>> context = {
 'date': datetime.now(),
 'movies': ['Casablanca', 'The Sound of Music', 'Vertigo'],
 'total_minutes': 404,
}

Render the template and write a new file, report.html, with the following4.
result:

>>> with open('report.html', 'w') as file:
... file.write(template.render(context))

Generating Fantastic Reports Chapter 5

[150]

Open the report.html file in a browser:5.

How it works...
Steps 2 and 4 in the How to do it… section are very straightforward: they read the template
and save the resulting report.

As seen in Steps 3 and 4, the main task is to create a context dictionary with the information
to be displayed. The template then renders that information, as shown in step 5. Let's take a
look at jinja_template.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> Movies Report</title>
</head>
<body>
 <h1>Movies Report</h1>
 <p>Date {{date}}</p>
 <p>Movies seen in the last 30 days: {{movies|length}}</p>

 {% for movie in movies %}
 {{movie}}
 {% endfor %}

Generating Fantastic Reports Chapter 5

[151]

 <p>Total minutes: {{total_minutes}} </p>
</body>
</html>

Most of it is replacing the context values as defined between curly brackets, such as
{{total_minutes}}.

Note the tag, {% for ... %} / {% endfor %}, which defines a loop. That allows a very
Python-based assignment to generate multiple rows or elements.

Filters can be applied to the variables to modify them. In this case, the length filter is
applied to the movies list to obtain the size using the pipe symbol, as shown
in {{movies|length}}.

There's more...
Other than the {% for %} tag, there's an {% if %} tag, allowing it to display
conditionally:

{% if movies|length > 5 %}
 Wow, so many movies this month!
{% else %}
 Regular number of movies
{% endif %}

There are a good number of defined filters already (see the whole list here: http:/ / jinja.
pocoo.org/docs/2. 10/ templates/ #list- of-builtin- filters). But, it is also possible to
define custom ones.

Note that you can add a lot of processing and logic to the template using
filters. While a little bit is fine, try to limit the amount of logic in the
template. Most of the calculations for data to be displayed should be done
before, leaving the template to just display values. This makes the context
very straightforward and simplifies the template, allowing for changes.

Generating Fantastic Reports Chapter 5

[152]

When dealing with HTML files, it is good to auto-escape the variables. This means that
characters with meaning, for example, the < character, will be replaced by the equivalent
HTML code to be properly displayed on an HTML page. To do so, create the template with
the autoescape parameter. Check the difference here:

>>> Template('{{variable}}', autoescape=False).render({'variable':
'<'})
'<'
>>> Template('{{variable}}', autoescape=True).render({'variable': '<'})
'<'

Escaping can be applied on each variable with the e filter (meaning escape) and unapplied
with the safe filter (meaning it is safe to render as it is).

Jinja2 templates are extensible, meaning that you can create a base_template.html and
then extend it, changing some of the elements. You can include other files as well,
partitioning and separating different sections. See the full documentation for further
details.

Jinja2 is very powerful and allows us to create complex HTML templates,
and also in other formats such as LaTeX or JavaScript, though this
requires configuring. I encourage you to read the whole documentation
and have a look at all its capabilities!

The whole Jinja2 documentation can be found here: http:/ /jinja. pocoo. org/docs/ 2. 10/.

See also
The Creating a simple report in plain text recipe
The Formatting text in Markdown recipe

Formatting text in Markdown
Markdown is a very popular markup language used to create raw text that can be
converted into styled HTML. It is a good way of structuring documents in a way that is
readable in raw text format, while being able to properly style them in HTML.

In this recipe, we'll see how to transform a Markdown document into styled HTML using
Python.

Generating Fantastic Reports Chapter 5

[153]

Getting ready
We should start by installing the mistune module, which will compile Markdown
documents into HTML:

$ echo "mistune==0.8.3" >> requirements.txt
$ pip install -r requirements.txt

In the GitHub repository, there is a template file called markdown_template.md with a
template of the report to generate.

How to do it...
Import mistune and datetime:1.

>>> import mistune

Read the template from the file:2.

>>> with open('markdown_template.md') as file:
... template = file.read()

Set up the context of the data to be included in the report:3.

context = {
 'date': datetime.now(),
 'pmovies': ['Casablanca', 'The Sound of Music', 'Vertigo'],
 'total_minutes': 404,
}

As movies need to be displayed as bullet points, we transform the list into a4.
suitable Markdown bullet list. Also, we store the number of movies:

>>> context['num_movies'] = len(context['pmovies'])
>>> context['movies'] = '\n'.join('* {}'.format(movie) for movie in
context['pmovies'])

Render the template and compile the resulting Markdown into HTML:5.

>>> md_report = template.format(**context)
>>> report = mistune.markdown(md_report)

Generating Fantastic Reports Chapter 5

[154]

Finally, store the resulting report in the report.html file:6.

>>> with open('report.html', 'w') as file:
... file.write(report)

Open the report.html file in a browser to check the result:7.

How it works...
Steps 2 and 3 in the How do it… section prepare the template and the data to be displayed.
In Step 4, extra information is produced—the number of movies, which is derivative from
the movies element. The movies element is then transformed into a valid Markdown
element from a Python list. Note the new lines and the initial *, which will be rendered as a
bullet point:

>>> '\n'.join('* {}'.format(movie) for movie in context['pmovies'])
'* Casablanca\n* The Sound of Music\n* Vertigo'

In Step 5, the template is generated in Markdown format. The format is very readable in
this raw form, which is the strong point of Markdown:

Movies Report
=======

Date: 2018-06-29 20:47:18.930655

Generating Fantastic Reports Chapter 5

[155]

Movies seen in the last 30 days: 3

* Casablanca
* The Sound of Music
* Vertigo

Total minutes: 404

Then, using mistune, the report is transformed into HTML and stored in a file in Step 6.

There's more...
Learning Markdown is extremely useful, as it is supported by many common web pages as
a way of enabling text input that is easy and can render to a styled format. Some examples
are GitHub, Stack Overflow, and most blogging platforms.

There is actually more than one kind of Markdown. This is because the
official definition was limited or ambiguous, and there was no interest in
clarifying or standardizing it. This led to several implementations that are
sightly different, such as GitHub Flavoured Markdown, MultiMarkdown,
and CommonMark.

The text in Markdown is quite readable, but in case you need to interactively see how it will
look, you can use the Dillinger online editor at https:/ /dillinger. io/ .

Mistune full docs are available here: http:/ /mistune. readthedocs. io/ en/latest/ .

The full Markdown syntax can be found at https:/ /daringfireball. net/ projects/
markdown/syntax, and a good cheat sheet with the most-used elements at https:/ /beegit.
com/markdown-cheat- sheet.

See also
The Creating a simple report in pain text recipe
The Using templates for reports recipe

Generating Fantastic Reports Chapter 5

[156]

Writing a basic Word document
Microsoft Office is one of the most common pieces of software, and MS Word in particular
is almost a de facto standard for documents. Generating docx documents is possible with
an automated script, which will help distribute reports in a format that's easily readable in
many business.

In this recipe, we will learn how to generate a full Word document.

Getting ready
We'll use the python-docx module to process Word documents:

>>> echo "python-docx==0.8.6" >> requirements.txt
>>> pip install -r requirements.txt

How to do it...
Import python-docx and datetime:1.

>>> import docx
>>> from datetime import datetime

Define the context with the data to be stored in the report:2.

context = {
 'date': datetime.now(),
 'movies': ['Casablanca', 'The Sound of Music', 'Vertigo'],
 'total_minutes': 404,
}

Create a new docx document, and include a heading, Movies Report:3.

>>> document = docx.Document()
>>> document.add_heading('Movies Report', 0)

Add a paragraph describing the date, with the date in italics:4.

>>> paragraph = document.add_paragraph('Date: ')
>>> paragraph.add_run(str(context['date'])).italic = True

Generating Fantastic Reports Chapter 5

[157]

Add information about the number of movies seen in a different paragraph:5.

>>> paragraph = document.add_paragraph('Movies see in the last 30 days:
')
>>> paragraph.add_run(str(len(context['movies']))).italic = True

Add each of the movies as a bullet point:6.

>>> for movie in context['movies']:
... document.add_paragraph(movie, style='List Bullet')

Add the total minutes and save the file as follows:7.

>>> paragraph = document.add_paragraph('Total minutes: ')
>>> paragraph.add_run(str(context['total_minutes'])).italic = True
>>> document.save('word-report.docx')

Open the word-report.docx file to check it:8.

How it works...
The basics of a Word document is that it is divided in to paragraphs, and each of the
paragraphs is divided in to runs. A run is a part of a paragraph that shares the same style.

Generating Fantastic Reports Chapter 5

[158]

Steps 1 and 2 in the How to do it… section are preparation for importing and defining the
data that's going to be stored in the report.

In Step 3, the document is created and a heading with the proper title is added. This
automatically styles the text.

Dealing with paragraphs is introduced in Step 4. A new paragraph is created based on the
introduced text with the default style, but new runs can be added to change it. Here, we
added the first run with the text Date:, and then another run is added with the specific
time and labelled as italic.

In Steps 5 and 6, we see information about the movies. The first part stores the number of
movies, in a similar way to Step 4. After that, the movies are added to the report one by
one, and the style is set up like bullet points.

Finally, Step 7 stores the total run time of all movies, in a similar way to Step 4, and stores
the document in a file.

There's more...
If you need to introduce extra lines in the document for formatting purposes, add empty
paragraphs.

Due to the way that the MS Word format works, there's no easy way of determining how
many pages is going to have. You may need to run some tests on sizes, especially if you're
generating the text to store dynamically.

Even if you generate docx files, having MS Office is not necessary. There
are other applications that can open and deal with these files, including
free alternatives such as LibreOffice.

The whole python-docx documentation is available here: https:/ /python- docx.
readthedocs.io/en/ latest/ .

See also
The Styling a Word document recipe
The Generating structure in Word documents recipe

Generating Fantastic Reports Chapter 5

[159]

Styling a Word document
A Word document can be very plain, but we can also add styling to help properly
understand the displayed data. Word has a set of predefined styles that can be used to
variate the document and highlight the important parts of it.

Getting ready
We'll use the python-docx module to process Word documents:

>>> echo "python-docx==0.8.6" >> requirements.txt
>>> pip install -r requirements.txt

How to do it...
Import the python-docx module:1.

>>> import docx

Create a new document:2.

>>> document = docx.Document()

Add a paragraph that highlights some words in different ways, Italics, bold, and3.
underline:

>>> p = document.add_paragraph('This shows different kinds of emphasis:
')
>>> p.add_run('bold').bold = True
>>> p.add_run(', ')
<docx.text.run.Run object at ...>
>>> p.add_run('italics').italic = True
>>> p.add_run(' and ')
<docx.text.run.Run object at ...>
>>> p.add_run('underline').underline = True
>>> p.add_run('.')
<docx.text.run.Run object at ...>

Generating Fantastic Reports Chapter 5

[160]

Create some paragraphs, styling them with default styles, such as List Bullet,4.
List Number, or Quote:

>>> document.add_paragraph('a few', style='List Bullet')
<docx.text.paragraph.Paragraph object at ...>
>>> document.add_paragraph('bullet', style='List Bullet')
<docx.text.paragraph.Paragraph object at ...>
>>> document.add_paragraph('points', style='List Bullet')
<docx.text.paragraph.Paragraph object at ...>
>>>
>>> document.add_paragraph('Or numbered', style='List Number')
<docx.text.paragraph.Paragraph object at ...>
>>> document.add_paragraph('that will', style='List Number')
<docx.text.paragraph.Paragraph object at ...>
>>> document.add_paragraph('that keep', style='List Number')
<docx.text.paragraph.Paragraph object at ...>
>>> document.add_paragraph('count', style='List Number')
<docx.text.paragraph.Paragraph object at ...>
>>>
>>> document.add_paragraph('And finish with a quote', style='Quote')
<docx.text.paragraph.Paragraph object at 0x10d2336d8>

Create a paragraph in a different font and size. We'll use Arial font and a point5.
size of 25. The paragraph will be aligned to the right:

>>> from docx.shared import Pt
>>> from docx.enum.text import WD_ALIGN_PARAGRAPH
>>> p = document.add_paragraph('This paragraph will have a manual
styling and right alignment')
>>> p.runs[0].font.name = 'Arial'
>>> p.runs[0].font.size = Pt(25)
>>> p.alignment = WD_ALIGN_PARAGRAPH.RIGHT

Save the document:6.

>>> document.save('word-report-style.docx')

Open the word-report-style.docx document to verify its content:7.

Generating Fantastic Reports Chapter 5

[161]

How it works...
After creating the document in Step 1, Step 2 from the How to do it… section adds a
paragraph that has several runs. In Word, a paragraph can contain multiple runs, which are
parts that can have different styles. In general, any format change related to individual
words will be applied to a run, while a change that affects paragraphs will be applied to the
paragraph.

Each of the runs are created, by default, with the Normal style. Any attribute of .bold,
.italic, or .underline can be changed to True to set up if the run should be in a proper
style or a combination. A value of False will deactivate it, while a None value will leave it
as the default.

Generating Fantastic Reports Chapter 5

[162]

Note that the proper word in this protocol is italic, and not italics. Setting
the property to italics won't have any effect, but won't display an error
either.

Step 4 shows how to apply some of the default styles for paragraphs, in this case to show
bullet points, numbered lists, and quotes. There are more styles, and they can be checked in
this page of the documentation: https:/ / python- docx. readthedocs. io/ en/latest/ user/
styles-understanding. html? highlight= List%20Bullet#paragraph- styles- in-default-
template. Try to find out which ones work best for your document.

The .font property of a run is shown in Step 5. This allows you to manually set up a
specific font and size. Note that the size needs to be specified using the proper Pt (points)
object.

The alignment of the paragraph is set up in the paragraph object, and uses a constant to
define whether it is left, right, center, or justified. All alignment options can be found
here: https://python- docx. readthedocs. io/ en/latest/ api/enum/ WdAlignParagraph.
html.

Finally, step 7 saves the file so it's stored in the file system.

There's more...
The font attribute can also be used to set up more properties of the text, such as small caps,
shadow, emboss, or strikethrough. The whole range of possibilities is shown here: https:/ /
python-docx.readthedocs. io/ en/ latest/ api/text. html#docx. text. run. Font.

Another available option is to change the color of the text. Note the run can be any of the
previously generated runs:

>>> from docx.shared import RGBColor
>>> DARK_BLUE = RGBColor.from_string('1b3866')
>>> run.font.color.rbg = DARK_BLUE

Generating Fantastic Reports Chapter 5

[163]

The color can be described in the usual hex format from a string. Try to define all the colors
to use to ensure they are all consistent, and limit yourself to a maximum of three colors in a
report to not overcharge it.

You can use an online color picker, such as this one: https:/ /www.
w3schools. com/ colors/ colors_ picker. asp. Remember to not use the # at
the beginning. If you need to generate a palette, it's a good idea to use
tools such as https:/ /coolors. co/ to generate good combinations.

The whole python-docx documentation is available here: https:/ /python- docx.
readthedocs.io/en/ latest/ .

See also
The Writing a basic Word document recipe
The Generating structure in Word documents recipe

Generating structure in Word documents
To create proper professional reports, they need to have the proper structure. An MS Word
document doesn't have the concept of a page, as it works in paragraphs, but we can
introduce breaks and sections to properly divide a document.

We'll see in this recipe how to create a structured Word document.

Getting ready
We'll use the python-docx module to process Word documents:

>>> echo "python-docx==0.8.6" >> requirements.txt
>>> pip install -r requirements.txt

Generating Fantastic Reports Chapter 5

[164]

How to do it...
Import the python-docx module:1.

>>> import docx

Create a new document:2.

>>> document = docx.Document()

Create a paragraph that has a line break:3.

>>> p = document.add_paragraph('This is the start of the paragraph')
>>> run = p.add_run()
>>> run.add_break(docx.text.run.WD_BREAK.LINE)
>>> p.add_run('And now this in a different line')
>>> p.add_run(". Even if it's on the same paragraph.")

Create a page break and write a paragraph:4.

>>> document.add_page_break()
>>> document.add_paragraph('This appears in a new page')

Create a new section, which will be on landscape pages:5.

>>> section = document.add_section(
docx.enum.section.WD_SECTION.NEW_PAGE)
>>> section.orientation = docx.enum.section.WD_ORIENT.LANDSCAPE
>>> section.page_height, section.page_width = section.page_width,
section.page_height
>>> document.add_paragraph('This is part of a new landscape section')

Create another section, reverting to portrait orientation:6.

>>> section = document.add_section(
docx.enum.section.WD_SECTION.NEW_PAGE)
>>> section.orientation = docx.enum.section.WD_ORIENT.PORTRAIT
>>> section.page_height, section.page_width = section.page_width,
section.page_height
>>> document.add_paragraph('In this section, recover the portrait
orientation')

Save the document:7.

>>> document.save('word-report-structure.docx')

Generating Fantastic Reports Chapter 5

[165]

Check the result by opening the document and checking the resulting sections:8.

Generating Fantastic Reports Chapter 5

[166]

Check the new page:

Generating Fantastic Reports Chapter 5

[167]

Check for a landscape section:

Generating Fantastic Reports Chapter 5

[168]

Then, go back to portrait orientation:

Generating Fantastic Reports Chapter 5

[169]

How it works...
After creating the document in Step 2 in the How to do it… section, we add a paragraph for
the first section. Notice that the document starts with a section. The paragraph introduces a
line break in the middle of the paragraph.

There is a small difference between a line break in a paragraph and a new
paragraph, though for most uses it is quite similar. Try to experiment with
them.

A page break is introduced in Step 3, without changing the section.

Step 4 creates a new section on a new page. Step 5 also changes the orientation of the page
to landscape. In Step 6, a new section is introduced and the orientation reverts to portrait.

Note that when changing the orientation, we also need to swap the width
and height. Each new section inherits the properties from the previous
one, so this swapping needs to happen in Step 6 as well.

Finally, the document is saved in Step 6.

There's more...
A section mandates page composition, including the orientation and size of the page. The
size of the page can be changed using the length options, such as Inches or Cm:

>>> from docx.shared import Inches, Cm
>>> section.page_height = Inches(10)
>>> section.page_width = Cm(20)

The page margins can also be defined in the same way:

>>> section.left_margin = Inches(1.5)
>>> section.right_margin = Cm(2.81)
>>> section.top_margin = Inches(1)
>>> section.bottom_margin = Cm(2.54)

Generating Fantastic Reports Chapter 5

[170]

Sections can also be forced to start not only on the next page, but on the next odd page,
which will look better when printing on two sides:

>>> document.add_section(docx.enum.section.WD_SECTION.ODD_PAGE)

The whole python-docx documentation is available here: https:/ /python- docx.
readthedocs.io/en/ latest/ .

See also
The Writing a basic Word document recipe
The Styling a Word document recipe

Adding pictures to Word documents
Word documents are capable of adding images to show graphs or any other kind of extra
information. Being able to add an image is a great way of creating rich reports.

We'll see in this recipe how to include an existing file in a Word document.

Getting ready
We'll use the python-docx module to process Word documents:

$ echo "python-docx==0.8.6" >> requirements.txt
$ pip install -r requirements.txt

We need to prepare an image to include in the document. We'll use the file in GitHub at
https://github.com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter04/images/ photo- dublin- a1. jpg, which shows a view of Dublin. You can
download it on the command line, like this:

$ wget
https://github.com/PacktPublishing/Python-Automation-Cookbook/blob/mast
er/Chapter04/images/photo-dublin-a1.jpg

Generating Fantastic Reports Chapter 5

[171]

How to do it...
Import the python-docx module:1.

>>> import docx

Create a new document:2.

>>> document = docx.Document()

Create a paragraph with some text:3.

>>> document.add_paragraph('This is a document that includes a picture
taken in Dublin')

Add the image:4.

>>> image = document.add_picture('photo-dublin-a1.jpg')

Scale the image properly to fit on the page (14 x 10):5.

>>> from docx.shared import Cm
>>> image.width = Cm(14)
>>> image.height = Cm(10)

The image has been added to a new paragraph. Align it to the center and add6.
descriptive text:

>>> paragraph = document.paragraphs[-1]
>>> from docx.enum.text import WD_ALIGN_PARAGRAPH
>>> paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
>>> paragraph.add_run().add_break()
>>> paragraph.add_run('A picture of Dublin')

Add a new paragraph with extra text, and save the document:7.

>>> document.add_paragraph('Keep adding text after the image')
<docx.text.paragraph.Paragraph object at XXX>
>>> document.save('report.docx')

Generating Fantastic Reports Chapter 5

[172]

Check the result:8.

How it works...
The first few steps (Step 1 to Step 3 in the How to do it… section) create the document and
add some text.

Generating Fantastic Reports Chapter 5

[173]

Step 4 adds the image from the file, and Step 5 resizes it into a manageable size. By default,
the image is too big.

Keep in mind the proportion of the image when resizing. Note that you
can also use other measures such as Inch, defined in shared as well.

Inserting the image creates a new paragraph as well, so the paragraph can be styled to align
the image or to add more text, such as a reference or description. The paragraph is obtained
in Step 6 through the document.paragraph property. The last paragraph is obtained and
styled properly, aligning it to the center. A new line and a run with descriptive text are
added.

Step 7 adds extra text after the image and saves the document.

There's more...
The size of the image can be changed, but as we saw before, the proportion of the image
needs to be calculated if that changes. The resizing may end up not being perfect if done by
approximation, as in Step 5 from the How to do it… section.

Notice that the image does not have a perfect ratio of 10:14. It should
instead be 10:13.33. For an image, that may be good enough, but for data
that is more sensitive to proportion changes, such as a chart, it may
require extra care.

To obtain the proper relation, divide the height by the width and then scale properly:

>>> image = document.add_picture('photo-dublin-a1.jpg')
>>> image.height / image.width
0.75
>>> RELATION = image.height / image.width
>>> image.width = Cm(12)
>>> image.height = Cm(12 * RELATION)

Generating Fantastic Reports Chapter 5

[174]

If you need to transform the values to a particular size, you can use the cm, inches, mm, or
pt attributes:

>>> image.width.cm
12.0
>>> image.width.mm
120.0
>>> image.width.inches
4.724409448818897
>>> image.width.pt
340.15748031496065

The whole python-docx documentation is available here: https:/ /python- docx.
readthedocs.io/en/ latest/ .

See also
The Writing a basic Word document recipe
The Styling a Word document recipe
The Generating structure in Word documents recipe

Writing a simple PDF document
PDF files are a common way of sharing reports. The main characteristic of PDF documents
is that they define exactly how the document is going to look, and they are read-only after
being produced, which makes them very straightforward to share.

In this recipe, we'll see how to write a simple PDF report using Python.

Getting ready
We'll use the fpdf module to create PDF documents:

>>> echo "fpdf==1.7.2" >> requirements.txt
>>> pip install -r requirements.txt

Generating Fantastic Reports Chapter 5

[175]

How to do it...
Import the fpdf module:1.

>>> import fpdf

Create a document:2.

>>> document = fpdf.FPDF()

Define the font and color for a title, and add the first page:3.

>>> document.set_font('Times', 'B', 14)
>>> document.set_text_color(19, 83, 173)
>>> document.add_page()

Write the title of the document:4.

>>> document.cell(0, 5, 'PDF test document')
>>> document.ln()

Write a long paragraph:5.

>>> document.set_font('Times', '', 12)
>>> document.set_text_color(0)
>>> document.multi_cell(0, 5, 'This is an example of a long paragraph.
' * 10)
[]
>>> document.ln()

Write another long paragraph:6.

>>> document.multi_cell(0, 5, 'Another long paragraph. Lorem ipsum
dolor sit amet, consectetur adipiscing elit.' * 20)

Save the document:7.

>>> document.output('report.pdf')

Generating Fantastic Reports Chapter 5

[176]

Check the report.pdf document:8.

How it works...
The fpdf module creates a PDF document and allows us to write in it.

Due to the peculiarities of a PDF, the best way to think about it is to
imagine a cursor writing in the document and moving to the next
position, similar to a typewriter.

The first operations are to specify the font and size to use, and then add the first page. This
is done in Step 3. The first font is in bold (second argument, 'B') and in a bigger font than
the rest of the document to serve as a title. The color is also set up with .set_text_color,
in RGB components.

Generating Fantastic Reports Chapter 5

[177]

The text can also be styled in italics with I and underlined with U. You can
combine them, so BI will produce text in bold and italic.

The .cell call creates a box of text with the specified text. The first couple of parameters
are the width and height. Width 0 uses the whole space up to the right margin. Height 5
(mm) is adequate for a size 12 font. The call to .ln introduces a new line.

To write a multiline paragraph, we use the .multi_cell method. Its parameters are the
same as .cell. Two paragraphs are written in Steps 5 and 6. Notice the change in font
before, to distinguish the title from the body of the report. The .set_text_color is called
with a single argument to set up the color in grayscale. In this case, it is in black.

Using .cell for long text will make it go over the margin and off the
page. Use it only for text that will fit in a single line. You can find the size
of a string with .get_string_width.

The document is saved to disk in Step 7.

There's more...
Pages are added automatically is a multi_cell operation occupies all space available in a
page. Calling .add_page will move to a new page.

You can use any of the default fonts (Courier, Helvetica, and Times), or add an extra
font using .add_font. Check the documentation for more details: http:/ /pyfpdf.
readthedocs.io/en/ latest/ reference/ add_ font/ index. html.

The fonts Symbol and ZapfDingbats are also available, but are to be
used with symbols. This could be useful if you need some extra symbols,
but test before using them. The rest of the default fonts should include
your necessities for serif, sans serif, and fixed-width cases. In PDFs, fonts
used will be embedded in the document, so they'll be displayed properly.

Generating Fantastic Reports Chapter 5

[178]

Keep the height consistent through out the document, at least between text of the same size.
Define a constant you're comfortable with, and use it through out the text:

>>> BODY_TEXT_HEIGHT = 5
>>> document.multi_cell(0, BODY_TEXT_HEIGHT, text)

By default, the text will be justified, but that can be changed. Use the align argument with J
(justified), C (center), R (right), or L (left). For example, this produces text aligned to the left:

>>> document.multi_cell(0, BODY_TEXT_HEIGHT, text, align='L')

The full FPDF documentation can be found here: http:/ / pyfpdf. readthedocs. io/ en/
latest/index.html.

See also
Structuring a PDF
Aggregating PDF reports
Watermarking and encrypting a PDF

Structuring a PDF
Some elements can be automatically generated when creating a PDF to add a better look
and structure to your elements. In this recipe, we'll see how to add a header and footer, and
how to create links to other elements.

Getting ready
We'll use the fpdf module to create PDF documents:

>>> echo "fpdf==1.7.2" >> requirements.txt
>>> pip install -r requirements.txt

Generating Fantastic Reports Chapter 5

[179]

How to do it...
The structuring_pdf.py script is available in GitHub here: https:/ /github.1.
com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter05/
structuring_ pdf. py. The most relevant bits are displayed here:

import fpdf
from random import randint

class StructuredPDF(fpdf.FPDF):
 LINE_HEIGHT = 5

 def footer(self):
 self.set_y(-15)
 self.set_font('Times', 'I', 8)
 page_number = 'Page
{number}/{{nb}}'.format(number=self.page_no())
 self.cell(0, self.LINE_HEIGHT, page_number, 0, 0, 'R')

 def chapter(self, title, paragraphs):
 self.add_page()
 link = self.title_text(title)
 page = self.page_no()
 for paragraph in paragraphs:
 self.multi_cell(0, self.LINE_HEIGHT, paragraph)
 self.ln()

 return link, page

 def title_text(self, title):
 self.set_font('Times', 'B', 15)
 self.cell(0, self.LINE_HEIGHT, title)
 self.set_font('Times', '', 12)
 self.line(10, 17, 110, 17)
 link = self.add_link()
 self.set_link(link)
 self.ln()
 self.ln()

 return link

 def get_full_line(self, head, tail, fill):
 ...

Generating Fantastic Reports Chapter 5

[180]

 def toc(self, links):
 self.add_page()
 self.title_text('Table of contents')
 self.set_font('Times', 'I', 12)

 for title, page, link in links:
 line = self.get_full_line(title, page, '.')
 self.cell(0, self.LINE_HEIGHT, line, link=link)
 self.ln()

LOREM_IPSUM = ...

def main():
 document = StructuredPDF()
 document.alias_nb_pages()
 links = []
 num_chapters = randint(5, 40)
 for index in range(1, num_chapters):
 chapter_title = 'Chapter {}'.format(index)
 num_paragraphs = randint(10, 15)
 link, page = document.chapter(chapter_title,
 [LOREM_IPSUM] * num_paragraphs)
 links.append((chapter_title, page, link))

 document.toc(links)
 document.output('report.pdf')

Run the script, and it will generate the report.pdf file, which contains some2.
chapters and a table of contents. Note that it generates some randomness, so the
specific numbers will vary each time you run it:

$ python3 structuring_pdf.py

Generating Fantastic Reports Chapter 5

[181]

Check the result. Here is a sample:3.

Generating Fantastic Reports Chapter 5

[182]

Check the table of contents at the end:

Generating Fantastic Reports Chapter 5

[183]

How it works...
Let's take a look at each of the elements of the script.

StructuredPDF defines a class that inherits from FPDF. This is useful to overwrite
the footer method, which creates a footer each time a page is created. It also helps
simplify the code in main.

The main function creates the document. It starts the document, and adds each of the
chapters, collecting their link information. Finally, it calls the toc method to generate a
table of contents using the link information.

The text to be stored is generated by multiplying the LOREM_IPSUM text,
which is a placeholder.

The chapter method first prints a title section, and then adds each of the paragraphs
defined. It collects the page number on which the chapter starts and the link returned by
the title_text method to return them.

The title_text method writes the text in bigger and bolder text. Then, it adds a line to
separate the title from the body of the chapter. It generates and sets a link object pointing
to the current page in the following lines:

 link = self.add_link()
 self.set_link(link)

This link will be used in the table of contents to add a clickable element that points to this
chapter.

The footer method automatically adds a footer to each page. It sets a smaller font, and it
adds text with the current page (obtained through page_no) and uses {nb} , which will be
replaced with the total number of pages.

The call to alias_nb_pages in main ensures {nb} is replaced when the
document is generated.

Finally, the table of contents is generated in the toc method. It writes the title and adds all
the referenced links that have been collected as the link, page, and chapter name, which is
all the info required.

Generating Fantastic Reports Chapter 5

[184]

There's more...
Notice the use of randint to add a bit of randomness to the document. This call, available
in Python's standard library, returns a number between the defined maximum and
minimum. Both are included.

The get_full_line method generates a properly sized line for the table of contents. It
takes a start (the name of the chapter) and end (the page number), and adds the number of
fill characters (dots) until the line has the proper width (120 mm).

To calculate the size of the text, the script calls get_string_width, which takes into
account the font and the size.

Link objects can be used to point to a specific page, instead of the current one, and also not
to the start of the page; use set_link(link, y=place, page=num_page). Check the
documentation at http:/ /pyfpdf. readthedocs. io/ en/latest/ reference/ set_link/
index.html.

Adjusting some of the elements can take a certain degree of trial and error,
for example, to position the line. A sightly longer or shorter line can be a
matter of taste. Don't be afraid to experiment and check until it produces
the desired effect.

The full FPDF documentation can be found here: http:/ / pyfpdf. readthedocs. io/ en/
latest/index.html.

See also
The Writing a simple PDF document recipe
The Aggregating PDF reports recipe
The Watermarking and encrypting a PDF recipe

Aggregating PDF reports
In this recipe, we'll see how to mix two PDFs into the same one. This will allow us to
combine reports into a bigger one.

Generating Fantastic Reports Chapter 5

[185]

Getting ready
We'll use the PyPDF2 module. Pillow and pdf2image are also dependencies used by the
scripts:

$ echo "PyPDF2==1.26.0" >> requirements.txt
$ echo "pdf2image==0.1.14" >> requirements.txt
$ echo "Pillow==5.1.0" >> requirements.txt
$ pip install -r requirements.txt

For pdf2image to properly work, it needs to install pdftoppm, so check here for
instructions on how to install it for different platforms: https:/ /github. com/ Belval/
pdf2image#first-you- need- pdftoppm.

We need two PDFs to combine them. For this recipe, we'll use two PDFs: a report.pdf file
generated by the structuring_pdf.py script, available in GitHub at https:/ /github.
com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter05/
structuring_pdf. py, and another (report2.pdf) after watermarking it through the
following command:

$ python watermarking_pdf.py report.pdf -u automate_user -o report2.pdf

This uses the watermarking script watermarking_pdf.py, available in GitHub at https:/
/github.com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter05/
watermarking_pdf. py.

How to do it...
Import PyPDF2 and create the output PDF:1.

>>> import PyPDF2
>>> output_pdf = PyPDF2.PdfFileWriter()

Read the first file and create a reader:2.

>>> file1 = open('report.pdf', 'rb')
>>> pdf1 = PyPDF2.PdfFileReader(file1)

Append all pages to the output PDF:3.

>>> output_pdf.appendPagesFromReader(pdf1)

Generating Fantastic Reports Chapter 5

[186]

Open the second file, create a reader, and append the pages to the output PDF:4.

>>> file2 = open('report2.pdf', 'rb')
>>> pdf2 = PyPDF2.PdfFileReader(file2)
>>> output_pdf.appendPagesFromReader(pdf2)

Create the output file and save it:5.

>>> with open('result.pdf', 'wb') as out_file:
... output_pdf.write(out_file)

Close the open files:6.

>>> file1.close()
>>> file2.close()

Check the output file and confirm that it contains both PDFs pages.7.

How it works...
PyPDF2 allows us to create a reader for each input file, and add all its pages to a newly
created PDF writer. Note the files are opened in binary mode (rb).

The input files need to remain open until the result is saved. This is due to
the way the copy of the pages works. If the file is open, the resulting file
can be stored as an empty file.

The PDF writer is finally saved into a new file. Notice that the file needs to be open to write
in binary mode (wb).

There's more...
.appendPagesFromReader is very convenient for adding all pages, but it's also possible to
add a number of pages one by one with .addPage. For example, to add the third page, the
code would look like this:

>>> page = pdf1.getPage(3)
>>> output_pdf.addPage(page)

The full documentation for PyPDF2 is here: https:/ /pythonhosted. org/ PyPDF2/ .

Generating Fantastic Reports Chapter 5

[187]

See also
The Writing a simple PDF document recipe
The Structuring a PDF recipe
The Watermarking and encrypting a PDF recipe

Watermarking and encrypting a PDF
PDF files have some interesting security measures to limit the distribution of a document.
We can encrypt the content, making it necessary to know a password in order to be able to
read it. We'll see as well how to add a watermark to label the document clearly as not for
public distribution and, if leaked, to know its origin.

Getting ready
We'll use the pdf2image module to transform PDF documents to PIL images. Pillow is a
prerequisite. We'll also use PyPDF2:

$ echo "pdf2image==0.1.14" >> requirements.txt
$ echo "Pillow==5.1.0" >> requirements.txt
$ echo "PyPDF2==1.26.0" >> requirements.txt
$ pip install -r requirements.txt

For pdf2image to properly work, it needs to install pdftoppm, so check here for
instructions on how to install it for different platforms: https:/ /github. com/ Belval/
pdf2image#first-you- need- pdftoppm.

We also need a PDF file to watermark and encrypt. We'll use a report.pdf file generated
by the structuring_pdf.py script, available in GitHub at https:/ /github. com/
PacktPublishing/Python- Automation- Cookbook/ blob/ master/ chapter5/ structuring_
pdf.py.

Generating Fantastic Reports Chapter 5

[188]

How to do it...
The script, watermarking_pdf.py, is available in GitHub here: https:/ /1.
github.com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter05/ watermarking_ pdf. py. The most relevant bits are displayed here:

def encrypt(out_pdf, password):
 output_pdf = PyPDF2.PdfFileWriter()

 in_file = open(out_pdf, "rb")
 input_pdf = PyPDF2.PdfFileReader(in_file)
 output_pdf.appendPagesFromReader(input_pdf)
 output_pdf.encrypt(password)

 # Intermediate file
 with open(INTERMEDIATE_ENCRYPT_FILE, "wb") as out_file:
 output_pdf.write(out_file)

 in_file.close()

 # Rename the intermediate file
 os.rename(INTERMEDIATE_ENCRYPT_FILE, out_pdf)

def create_watermark(watermarked_by):
 mask = Image.new('L', WATERMARK_SIZE, 0)
 draw = ImageDraw.Draw(mask)
 font = ImageFont.load_default()
 text = 'WATERMARKED BY {}\n{}'.format(watermarked_by,
datetime.now())
 draw.multiline_text((0, 100), text, 55, font=font)

 watermark = Image.new('RGB', WATERMARK_SIZE)
 watermark.putalpha(mask)
 watermark = watermark.resize((1950, 1950))
 watermark = watermark.rotate(45)
 # Crop to only the watermark
 bbox = watermark.getbbox()
 watermark = watermark.crop(bbox)

 return watermark

def apply_watermark(watermark, in_pdf, out_pdf):
 # Transform from PDF to images
 images = convert_from_path(in_pdf)
 ...
 # Paste the watermark in each page

Generating Fantastic Reports Chapter 5

[189]

 for image in images:
 image.paste(watermark, position, watermark)

 # Save the resulting PDF
 images[0].save(out_pdf, save_all=True, append_images=images[1:])

Watermark the PDF file with the following command:2.

$ python watermarking_pdf.py report.pdf -u automate_user -o out.pdf
Creating a watermark
Watermarking the document
$

Check that the document added a watermark with automate_user and a3.
timestamp to all pages of out.pdf:

Generating Fantastic Reports Chapter 5

[190]

Watermark and encrypt with the following command. Note that encrypting may4.
take a little while:

$ python watermarking_pdf.py report.pdf -u automate_user -o out.pdf -p
secretpassword
Creating a watermark
Watermarking the document
Encrypting the document
$

Open the resulting out.pdf, and check that it requires you to input the5.
secretpassword password. The timestamp will also be new.

How it works...
The watermarking_pdf.py script first obtains the parameters from the command line
using argparse, and then passes it to a main function that calls the other three
functions, create_watermark, apply_watermark and, if a password is used, encrypt.

create_watermark generates an image with the watermark. It uses the Pillow Image class
to create a grey image (mode L) and draw the text. Then, this image gets applied as an
alpha channel on a new image, making the image semi-transparent, so it will show the text
to watermark.

The alpha channel makes fully transparent anything in white (color 0) and
fully opaque anything in black (color 255). In this case, the background is
white and the color of the text is 55, making it semi-transparent.

The image is then rotated 45 degrees and cropped to reduce the transparent background
that may have appeared. This centers the image and allows for better positioning.

In the next step, apply_watermark transforms the PDF into a sequence of PIL Images
using the pdf2image module. It calculates the position to apply the watermark, and then
pastes the watermark.

The image needs to be located by its left-top corner. This is located in the
half of the document, minus half of the watermark, in both height and
width. Note that the script assumes that all the pages of the document are
equal.

Generating Fantastic Reports Chapter 5

[191]

Finally, the result is saved to a PDF; notice the save_all parameter, which allows us to
save a multipage PDF.

If a password is passed, the encrypt function is called. It opens the output PDF,
using PdfFileReader, and creates a new intermediate PDF with PdfFileWriter. All the
pages of the output PDF are added to the new PDF, the PDF is encrypted, and then the
intermediate PDF is renamed as the output PDF using os.rename.

There's more...
As part of the watermarking, notice that the pages are transformed into images from text.
This adds extra protection, as the text won't be extractable directly, as it is stored as an
image. When protecting a file, this is a good idea, as it will stop copying/pasting directly.

This is not a huge security measure, though, as the text may be extractable
through OCR tools. But, it protects against casual extraction of the text.

The default font from PIL can be a little rough. Another font, if the TrueType or OpenType
file is available, can be added and used by calling the following:

font = ImageFont.truetype('my_font.ttf', SIZE)

Note that this may require installing the FreeType libraries, normally available as part of
the libfreetype package. Further documentation is available at https:/ /www. freetype.
org/. Depending on the font and size, you may need to adjust the sizes.

The full pdf2image documentation can be found at https:/ /github. com/ Belval/
pdf2image, the full documentation for PyPDF2 at https:/ /pythonhosted. org/PyPDF2/ , and
the full documentation for Pillow can be found at https:/ / pillow. readthedocs. io/ en/
5.2.x/.

See also
The Writing a simple PDF document recipe
The Structuring a PDF recipe
The Aggregating PDF reports recipe

6
Fun with Spreadsheets

In this chapter, we will cover the following recipes:

Writing a CSV spreadsheet
Updating CSV spreadsheets
Reading an Excel spreadsheet
Updating an Excel spreadsheet
Creating new sheets in an Excel spreadsheet
Creating charts in Excel
Working with format in Excel
Reading and writing in LibreOffice
Creating a macro in LibreOffice

Introduction
Spreadsheets are one of the most versatile and omnipresent tools in the world of
computing. Their intuitive approach of sheets and cells is used by virtually everyone that
uses a computer as part of their day-to-day operations. There's even a joke that whole
complex businesses are managed and described in a single spreadsheet. They are an
incredibly powerful tool.

That makes the ability to automate reading from and writing to spreadsheets so powerful.
We'll see in this chapter how to process spreadsheets, mainly in the most common format,
Excel. A final recipe will cover a free alternative, Libre Office, and in particular, how to use
Python as a scripting language inside it.

Fun with Spreadsheets Chapter 6

[193]

Writing a CSV spreadsheet
CSV files are simple spreadsheets that are easy to share. They are basically a text file with
tabular data, separated by commas (hence the name Comma-Separated Values), in a simple
table format. CSV files can be created using Python's standard library and can be read by
most spreadsheet software.

Getting ready
For this recipe, only the standard library of Python is required. Everything is ready out of
the box!

How to do it...
Import the csv module:1.

>>> import csv

Define the header with how the data will be ordered and the data to store:2.

>>> HEADER = ('Admissions', 'Name', 'Year')
>>> DATA = [
... (225.7, 'Gone With the Wind', 1939),
... (194.4, 'Star Wars', 1977),
... (161.0, 'ET: The Extra-Terrestrial', 1982)
...]

Write the data into a CSV file:3.

>>> with open('movies.csv', 'w', newline='') as csvfile:
... movies = csv.writer(csvfile)
... movies.writerow(HEADER)
... for row in DATA:
... movies.writerow(row)

Check the resulting CSV file in a spreadsheet. In the following screenshot, the file4.
is displayed using the LibreOffice software:

Fun with Spreadsheets Chapter 6

[194]

How it works...
After the preparation work in steps 1 and 2 in the How to do it… section, step 3 is the part
that does the work.

It opens a new file, movies.csv, in write (w) mode. The raw file object in csvfile then
creates a writer. All this happens in a with block, so it closes the file when it's over.

Note the newline='' parameter. This is done to make the writer store
the newline directly and avoid incompatibility issues.

Fun with Spreadsheets Chapter 6

[195]

The writer writes row by row the elements using .writerow. The first one is the HEADER,
and then each of the lines of data.

There's more...
The code presented stores the data in the default dialect. The dialect defines what divides
the data on each row (commas or other characters), how to escape, newlines, and so on. In
case the dialect needs to be tweaked, each of these parameters can be defined in the writer
call. See the following link for a list of all the parameters that can be defined:

https://docs.python. org/ 3/ library/ csv. html#dialects- and-formatting- parameters.

CSV files are better when simple. If the data to be stored is complicated,
maybe the best alternative is not a CSV file. But CSV files are extremely
useful when dealing with tabular data. They can be understood by
virtually all programs, and even dealing with them at a low level is easy.

The full csv module documentation can be found here:

https://docs.python. org/ 3/ library/ csv. html.

See also
The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files
The Updating CSV files recipe

Updating the CSV files
Given that CSV files are simple text files, the best solution to update their content is to read
them, change them to internal Python objects, and then write the result in the same format.
In this recipe, will see how to do this.

Fun with Spreadsheets Chapter 6

[196]

Getting ready
In this recipe, we will use the movies.csv file that is available on GitHub at https:/ /
github.com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter06/
movies.csv. It contains the following data:

Admissions Name Year
225.7 Gone With the Wind 1939
194.4 Star Wars 1968
161.0 ET: The Extra-Terrestrial 1982

Notice that the year of Star Wars is incorrect (it should be 1977). We'll change it in the
recipe.

How to do it...
Import the csv module and define the filename:1.

>>> import csv
>>> FILENAME = 'movies.csv'

Read the contents of the file using a DictReader and transform them into a list2.
of ordered rows:

>>> with open(FILENAME, newline='') as file:
... data = [row for row in csv.DictReader(file)]

Check the obtained data. Change the proper value from 1968 to 1977:3.

>>> data
[OrderedDict([('Admissions', '225.7'), ('Name', 'Gone With the Wind'),
('Year', '1939')]), OrderedDict([('Admissions', '194.4'), ('Name',
'Star Wars'), ('Year', '1968')]), OrderedDict([('Admissions', '161.0'),
('Name', 'ET: The Extra-Terrestrial'), ('Year', '1982')])]
>>> data[1]['Year']
'1968'
>>> data[1]['Year'] = '1977'

Fun with Spreadsheets Chapter 6

[197]

Open the file again, and store the values:4.

>>> HEADER = data[0].keys()
>>> with open(FILENAME, 'w', newline='') as file:
... writer = csv.DictWriter(file, fieldnames=HEADER)
... writer.writeheader()
... writer.writerows(data)

Check the result in spreadsheet software. The result is similar to that displayed in5.
step 4 of the Writing a CSV spreadsheet recipe.

How it works...
After importing the csv module in step 2 of the How to do it… section, we extract all the
data from the file. The file is opened in a with block. DictReader conveniently transforms
it into a list of dictionaries, with the keys on the header values.

The conveniently formatted data can then be manipulated and changed. We change the
data to the proper value in step 3.

In this recipe, we change the value directly, but searching may be required
in a more general case.

Step 4 overwrites the file and, using DictWriter, stores the data. DictWriter requires us
to define the fields on the columns by requiring the fieldnames. To obtain it, we retrieve
the keys of one of the rows and store them in HEADER.

The file is opened again in w mode to overwrite it. DictWriter first stores the header with
.writeheader and then stores all the rows with a single call to .writerows.

The rows can also be added one by one by calling .writerow

After closing the with block, the file is stored and can be checked.

Fun with Spreadsheets Chapter 6

[198]

There's more...
The dialect of the CSV file typically known, but it may be the case that it is not. In that case,
the Sniffer class can help. It analyses a sample of the file (or the whole file) and returns a
dialect object to allow reading in the proper way:

>>> with open(FILENAME, newline='') as file:
... dialect = csv.Sniffer().sniff(file.read())

The dialect then can be passed to the DictReader class when opening the file. The file will
need to be opened twice for reading.

Remember to use the dialect on the DictWriter class as well to save the
file in the same format.

The full documentation for the csv module can be found here:

https://docs.python. org/ 3. 6/ library/ csv.html.

See also
The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files
The Writing a CSV spreadsheet recipe

Reading an Excel spreadsheet
MS Office is arguably the most common office suite software, making its formats pretty
much standards. In terms of spreadsheets, Excel is probably the most used one and a
format easily exchanged.

In this recipe, we'll see how to obtain information from an Excel spreadsheet
programmatically from Python using the openpyxl module.

Fun with Spreadsheets Chapter 6

[199]

Getting ready
We will use the openpyxl module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==2.5.4" >> requirements.txt
$ pip install -r requirements.txt

In the GitHub repository, there's an Excel spreadsheet named movies.xlsx that contains
information on the top ten movies by attendance. The file can be found here:

https://github.com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter06/movies. xlsx.

The source of the information is this web page:

http://www.mrob. com/ pub/ film- video/ topadj. html.

How to do it...
Import the openpyxl module:1.

>>> import openpyxl

Load the file into memory:2.

>>> xlsfile = openpyxl.load_workbook('movies.xlsx')

List all sheets and get the first one, which is the only one that contains data:3.

>>> xlsfile.sheetnames
['Sheet1']
>>> sheet = xlsfile['Sheet1']

Obtain the value of cells B4 and D4 (admissions and director of E.T.):4.

>>> sheet['B4'].value
161
>>> sheet['D4'].value
'Steven Spielberg'

Fun with Spreadsheets Chapter 6

[200]

Obtain the size in rows and columns. Any cell out of that range will return None5.
as a value:

>>> sheet.max_row
11
>>> sheet.max_column
4
>>> sheet['A12'].value
>>> sheet['E1'].value

How it works...
After importing the module in step 1, step 2 in the How to do it… section loads the file into
memory in a Workbook object. Each workbook can contain one or more sheets, which
contain cells.

To determine the available sheets, in step 3 we obtain all the sheets (there's only one in this
example) and then access the sheet like a dictionary to retrieve a Worksheet object.

Worksheet can then access all the cells directly by their names, such as A4 or C3. Each of
them will return a Cell object. The .value attribute stores the value in the cell.

In the rest of the recipes in this chapter, we will see more attributes of
Cell objects. Keep reading!

Obtaining the area where the data is stored is possible with max_columns and max_rows.
This allows us to search within the limits of the data.

Excel defines the columns as letters (A, B, C, and so on) and rows as
numbers (1, 2, 3, and so on). Remember to always set the column, and
then the row (D1, not 1D), or an error will be raised.

Cells outside the area are accessible, but won't return data. They can be used to write new
info.

Fun with Spreadsheets Chapter 6

[201]

There's more...
Cells can also be retrieved with sheet.cell(column, row). Both elements start at 1.

All the cells within the data area iterating from the sheet, for example:

>>> for row in sheet:
... for cell in row:
... # Do stuff with cell

This will return a list of lists with all cells, row by row: A1, A2, A3 ... B1, B2, B3, and so on.

You can retrieve the cell's column with columns iterating through
sheet.columns: A1, B1, C1, and so on, A2, B2, C2. and so on.

When retrieving a cell, you can find their position with .coordinate, .row, and .column:

>>> cell.coordinate
'D4'
>>> cell.column
'D'
>>> cell.row
4

The full openpyxl documentation can be found here:

https://openpyxl. readthedocs. io/ en/ stable/ index. html.

See also
The Updating an Excel spreadsheet recipe
The Creating new sheets in an Excel spreadsheet recipe
The Creating charts in Excel recipe
The Working with the format in Excel recipe

Fun with Spreadsheets Chapter 6

[202]

Updating an Excel spreadsheet
In this recipe, we'll see how to update an existing Excel spreadsheet. This will include
changing raw values in cells but also setting up formulas that will be evaluated when the
spreadsheet is open. We'll also see how to add comments to cells.

Getting ready
We will use the module openpyxl. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==2.5.4" >> requirements.txt
$ pip install -r requirements.txt

In the GitHub repository, there's an Excel spreadsheet named movies.xlsx that contains
information on the top ten movies by attendance.

The file can be found here:

https://github.com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter06/movies. xlsx.

How to do it...
Import the module openpyxl and the Comment class:1.

>>> import openpyxl
>>> from openpyxl.comments import Comment

Load the file into memory and get the sheet:2.

>>> xlsfile = openpyxl.load_workbook('movies.xlsx')
>>> sheet = xlsfile['Sheet1']

Obtain the value of cell D4 (director of E.T):3.

>>> sheet['D4'].value
'Steven Spielberg'

Change the value to just Spielberg:4.

>>> sheet['D4'].value = 'Spielberg'

Fun with Spreadsheets Chapter 6

[203]

Add a comment to that cell:5.

>>> sheet['D4'].comment = Comment('Changed text automatically', 'User')

Add a new element that obtains the total of all values in the Admission column:6.

>>> sheet['B12'] = '=SUM(B2:B11)'

Save the spreadsheet to the movies_comment.xlsx file:7.

>>> xlsfile.save('movies_comment.xlsx')

Check the resulting file, which includes the comment and the calculation of the8.
total of column B in A12:

How it works...
In the How to do it… section, the imports in step 1 and reading the spreadsheet in step 2, we
select the cell to be changed in step 3.

Updating the value is done in step 4 with an assignment. A comment in the cell is added,
overwriting the .coment attribute with a new Comment. Note that the user that made the
comment needs to be added as well.

Values can also include descriptions of formulas. In step 6, we add a new formula to cell
B12. The value is calculated and displayed when the file is opened in step 8.

Fun with Spreadsheets Chapter 6

[204]

The value of a formula is not calculated in the Python object. This means
that the formula could contain errors or display unexpected results
through bugs. Be sure to double-check that the formulas are correct.

Finally, in step 9, the spreadsheet is saved to disk by calling the .save method of the file.

The name of the resulting file can be the same one as the input one to
overwrite the file.

The comment and values can be checked by externally accessing the file.

There's more...
You can store data in multiple values, and it will be translated into the proper types for
Excel. For example, storing datetime will store it in the proper date format. The same is
true with float or other numeric formats.

If you need to infer types, you can enable this by using the guess_type parameter when
loading the file, for example:

>>> xlsfile = openpyxl.load_workbook('movies.xlsx', guess_types=True)
>>> xlsfile['Sheet1']['A1'].value = '37%'
>>> xlsfile['Sheet1']['A1'].value
0.37
>>> xlsfile['Sheet1']['A1'].value = '2.75'
>>> xlsfile['Sheet1']['A1'].value
2.75

Adding comments to automatically generated cells can help review the resulting file,
making clear how where they generated.

While is possible to add formulas to automatically generate Excel files, debugging the
results can be tricky. When generating a result, generally it's better to make the calculations
in Python and store the result in raw.

The full openpyxl documentation can be found here:

https://openpyxl. readthedocs. io/ en/ stable/ index. html.

Fun with Spreadsheets Chapter 6

[205]

See also
The Reading an Excel spreadsheet recipe
The Creating new sheets on an Excel spreadsheet recipe
The Creating charts in Excel recipe
The Working with the format in Excel recipe

Creating new sheets on an Excel
spreadsheet
In this recipe, we'll demonstrate how to create a new Excel spreadsheet from scratch, and
add and deal with multiple sheets.

Getting ready
We will use the module openpyxl. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==2.5.4" >> requirements.txt
$ pip install -r requirements.txt

We'll store in the new file information about the movies with the most attendance. Data is
extracted from here:

http://www.mrob. com/ pub/ film- video/ topadj. html.

How to do it...
Import the openpyxl module:1.

>>> import openpyxl

Fun with Spreadsheets Chapter 6

[206]

Create a new Excel file. It creates a default sheet, called Sheet:2.

>>> xlsfile = openpyxl.Workbook()
>>> xlsfile.sheetnames
['Sheet']
>>> sheet = xlsfile['Sheet']

Add data about the number of attendees to this sheet from the source. Only the3.
first three are added for simplicity:

>>> data = [
... (225.7, 'Gone With the Wind', 'Victor Fleming'),
... (194.4, 'Star Wars', 'George Lucas'),
... (161.0, 'ET: The Extraterrestrial', 'Steven Spielberg'),
...]
>>> for row, (admissions, name, director) in enumerate(data, 1):
... sheet['A{}'.format(row)].value = admissions
... sheet['B{}'.format(row)].value = name

Create a new sheet:4.

>>> sheet = xlsfile.create_sheet("Directors")
>>> sheet
<Worksheet "Directors">
>>> xlsfile.sheetnames
['Sheet', 'Directors']

Add the name of the director for each movie:5.

>>> for row, (admissions, name, director) in enumerate(data, 1):
... sheet['A{}'.format(row)].value = director
... sheet['B{}'.format(row)].value = name

Save the file as movie_sheets.xlsx:6.

>>> xlsfile.save('movie_sheets.xlsx')

Fun with Spreadsheets Chapter 6

[207]

Open the movie_sheets.xlsx file to check that it has two sheets, with the7.
proper information, as shown in the following screenshot:

How it works...
In the How to do it… section, after importing the module in step 1, we create a new
spreadsheet in step 2. This is a new spreadsheet that contains just the default sheet.

The data to be stored is defined in step 3. Note it contains the info that will go on both
sheets (name in both, admissions in the first sheet, and director's name in the second). In
this step, the first sheet is filled.

Note how the value is stored. The proper cell is defined as column A or B
and the proper row (rows start at 1). The enumerate function returns a
tuple with the first element as the index and the second as the enumerate
parameter (an iterator).

Fun with Spreadsheets Chapter 6

[208]

After that, the new sheet is created in step 4, using the name Directors. .create_sheet
returns the new sheet.

The information in the Directors sheet is stored in step 5 and the file is saved in step 6.

There's more...
The name of an existing sheet can be changed through the .title property:

>>> sheet = xlsfile['Sheet']
>>> sheet.title = 'Admissions'
>>> xlsfile.sheetnames
['Admissions', 'Directors']

Be careful, as it won't be possible to access the sheet with xlsfile['Sheet']. That name
doesn't exist!

The active sheet, the sheet that will be displayed when the file is opened, can be obtained
through the .active property and changed with ._active_sheet_index. The index
starts at 0 for the first sheet:

>> xlsfile.active
<Worksheet "Admissions">
>>> xlsfile._active_sheet_index
0
>>> xlsfile._active_sheet_index = 1
>>> xlsfile.active
<Worksheet "Directors">

The sheet can also be copied using .copy_worksheet. Be aware that some data, for
example, charts, won't be carried over. Most duplicated information will be cell data:

new_copied_sheet = xlsfile.copy_worksheet(source_sheet)

The full openpyxl documentation can be found here:

https://openpyxl. readthedocs. io/ en/ stable/ index. html.

See also
The Reading an Excel spreadsheet recipe
The Updating an Excel spreadsheet and adding comments recipe

Fun with Spreadsheets Chapter 6

[209]

The Creating charts in Excel recipe
The Working with format in Excel recipe

Creating charts in Excel
Spreadsheets include a lot of tools to deal with data, including presenting the data in
colorful charts. Let's see how to append a chart programmatically to an Excel spreadsheet.

Getting ready
We will use the module openpyxl. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==2.5.4" >> requirements.txt
$ pip install -r requirements.txt

We'll store in the new file information about the movies with the most attendance. Data is
extracted from here:

http://www.mrob. com/ pub/ film- video/ topadj. html.

How to do it...
Import the openpyxl module and create a new Excel file:1.

>>> import openpyxl
>>> from openpyxl.chart import BarChart, Reference
>>> xlsfile = openpyxl.Workbook()

Add data about the number of attendees in this sheet from the source. Only the2.
first three are added for simplicity:

>>> data = [
... ('Name', 'Admissions'),
... ('Gone With the Wind', 225.7),
... ('Star Wars', 194.4),
... ('ET: The Extraterrestrial', 161.0),
...]
>>> sheet = xlsfile['Sheet']
>>> for row in data:
... sheet.append(row)

Fun with Spreadsheets Chapter 6

[210]

Create a BarChart object and fill it with basic information:3.

>>> chart = BarChart()
>>> chart.title = "Admissions per movie"
>>> chart.y_axis.title = 'Millions'

Create a reference to the data, and append the data to the chart:4.

>>> data = Reference(sheet, min_row=2, max_row=4, min_col=1, max_col=2)
>>> chart.add_data(data, from_rows=True, titles_from_data=True)

Add the chart to the sheet and save the file:5.

>>> sheet.add_chart(chart, "A6")
>>> xlsfile.save('movie_chart.xlsx')

Check the resulting chart in the spreadsheet, as shown in the following6.
screenshot:

Fun with Spreadsheets Chapter 6

[211]

How it works...
In the How to do it… section, after preparing the data in steps 1 and 2, the data is ready in
the range A1:B4. Note that A1 and B1 both contain a header that should not be used in the
chart.

In step 3, we set up the new chart and include the basic data, such as a title and the units of
the Y axis.

The title is changed to Millions; although a more correct way would
been Admissions(millions), it'd be redundant with the full title of the
chart.

Step 4 creates a reference box through a Reference object, from row 2 column 1 to row 4
column 2, which is the area where our data lives, excluding the header. The data is added
to the chart with .add_data. from_rows makes each row a different data
series. titles_from_data makes the first column treated as the name of the series.

The chart is added to cell A6 in step 5 and saved to disk.

There's more...
There are a bunch of different charts that can be created, including bar charts, line charts,
area charts (line charts that fill the area between the line and the axis), pie charts, or scatter
charts (XY charts where one value is plotted against the other). Each kind of chart has an
equivalent class, for example PieChart or LineChart.

Each one, at the same time, can have different types. For example, the default type for
BarChart is column, printing the bars vertically, but they can also be printed in vertical,
selecting a different type:

>>> chart.type = 'bar'

Check the openpyxl documentation to see all available combinations.

Instead of extracting the x axis labels from the data, they can be set explicitly with
set_categories. For example, compare step 4 with the following code:

data = Reference(sheet, min_row=2, max_row=4, min_col=2, max_col=2)
labels = Reference(sheet, min_row=2, max_row=4, min_col=1, max_col=1)
chart.add_data(data, from_rows=False, titles_from_data=False)
chart.set_categories(labels)

Fun with Spreadsheets Chapter 6

[212]

The range, instead of using a Reference object, can also be input with text labels
describing the region:

chart.add_data('Sheet!B2:B4', from_rows=False, titles_from_data=False)
chart.set_categories('Sheet!A2:A4')

This way of describing it may be more difficult to deal with if the range of data needs to be
created programatically.

Defining charts in Excel correctly can be difficult sometimes. The way
Excel extracts the data from a particular range can be baffling. Remember
to allow time for trial and error, and to deal with differences. For example,
in step 4 we define three series with one data point, while in the preceding
code we define a single series with three data points. Most of those
differences are subtle. Finally, the most important point is how the end
chart looks. Try different chart types and learn the differences.

The full openpyxl documentation can be found here:

https://openpyxl. readthedocs. io/ en/ stable/ index. html.

See also
The Reading an Excel spreadsheet recipe
The Updating an Excel spreadsheet and adding comments recipe
The Creating new sheets on an Excel spreadsheet recipe
The Working with format in Excel recipe

Working with format in Excel
Presenting information in spreadsheets is not just a matter of organizing it into cells or
displaying it graphically in charts, but also involves changing the format to highlight the
important points about it. In this recipe, we'll see how to manipulate the format of cells to
enhance the data and present it in the best way.

Fun with Spreadsheets Chapter 6

[213]

Getting ready
We will use the module openpyxl. We should install the module, adding it to
our requirements.txt file as follows:

$ echo "openpyxl==2.5.4" >> requirements.txt
$ pip install -r requirements.txt

We'll store in the new file information about the movies with the most attendance. Data is
extracted from here:

http://www.mrob. com/ pub/ film- video/ topadj. html.

How to do it...
Import the openpyxl module and create a new Excel file:1.

>>> import openpyxl
>>> from openpyxl.styles import Font, PatternFill, Border, Side
>>> xlsfile = openpyxl.Workbook()

Add data about the number of attendees in this sheet from the source. Only the2.
first four are added, for simplicity:

>>> data = [
... ('Name', 'Admissions'),
... ('Gone With the Wind', 225.7),
... ('Star Wars', 194.4),
... ('ET: The Extraterrestrial', 161.0),
... ('The Sound of Music', 156.4),
]
>>> sheet = xlsfile['Sheet']
>>> for row in data:
... sheet.append(row)

Fun with Spreadsheets Chapter 6

[214]

Define the colors to use for styling the spreadsheet:3.

>>> BLUE = "0033CC"
>>> LIGHT_BLUE = 'E6ECFF'
>>> WHITE = "FFFFFF"

Define the header in a blue background and a white font:4.

>>> header_font = Font(name='Tahoma', size=14, color=WHITE)
>>> header_fill = PatternFill("solid", fgColor=BLUE)
>>> for row in sheet['A1:B1']:
... for cell in row:
... cell.font = header_font
... cell.fill = header_fill

Define an alternate pattern for the columns and a border on each row after the5.
header:

>>> white_side = Side(border_style='thin', color=WHITE)
>>> blue_side = Side(border_style='thin', color=BLUE)
>>> alternate_fill = PatternFill("solid", fgColor=LIGHT_BLUE)
>>> border = Border(bottom=blue_side, left=white_side,
right=white_side)
>>> for row_index, row in enumerate(sheet['A2:B5']):
... for cell in row:
... cell.border = border
... if row_index % 2:
... cell.fill = alternate_fill

Save the file as movies_format.xlsx:6.

>>> xlsfile.save('movies_format.xlsx')

Fun with Spreadsheets Chapter 6

[215]

Check the resulting file: 7.

How it works...
In the How to do it… section, in step 1 we import the openpyxl module and create a new
Excel file. In step 2, we add the data to the first sheet. Step 3 is also a preparation step to
define the colors to be used. The colors are defined in hex format, which is common in the
web design world.

To find the definition of colors, there are plenty of color pickers online or
even embedded in the OS. A tool like https:/ /coolors. co/ can be useful
to define a palette to work with.

Fun with Spreadsheets Chapter 6

[216]

In step 4, we prepare the format to define the header. The header will have a different font
(Tahoma), a bigger size (14pt), and it will be white on a blue background. To do this, we
prepare a Font object with the font, size, and foreground color, and a PatternFill with
the background color.

The loop after creating header_font and header_fill applies the font and fill to the
proper cells.

Note that iterating over a range always returns the row, then cells, even if
only one row is involved.

In step 5, a border to the rows and an alternate background is applied. The border is
defined with blue top and bottom and white left and right. The fill is created in a similar
way to step 4, but in a light blue. The background is only applied to even rows.

Note that the top border of a cell is the bottom of the one above and vice
versa. This means that it's possible to overwrite the border in a loop.

The file is saved finally in step 6.

There's more...
To define the font, there are other options available, such as bold, italic, strikeout, or
underline. Define the font and reassign it if you need to change any of its elements. And
remember to check that the font is available.

There are also various ways of creating a fill. The PatternFill accepts several patterns,
but the most useful one is solid. GradientFill can also be used to apply a two-color
gradient.

It's best to limit yourself to solid fills using PatternFill. You can tweak
the color to best represent what you want. Remember to
include style='solid', or the colour may not appear.

Fun with Spreadsheets Chapter 6

[217]

It's also possible to define conditional formatting, but it's better to try to define the
conditionals in Python and then apply the proper formatting.

Number formatting can be set up properly, for example:

cell.style = 'Percent'

This will display the value 0.37 as 37%.

The full openpyxl documentation can be found here:

https://openpyxl. readthedocs. io/ en/ stable/ index. html.

See also
The Reading an Excel spreadsheet recipe
The Updating an Excel spreadsheet and adding comments recipe
The Creating new sheets on an Excel spreadsheet recipe
The Creating charts in Excel recipe

Creating a macro in LibreOffice
LibreOffice is a free office suite that's an alternative to MS Office and other office packages.
It includes a text editor and a spreadsheet program called Calc. Calc understands the
regular Excel formats, and it's also totally scriptable internally through its UNO API. The
UNO interface allows programmatic access to the suite, and it's accessible in different
languages, such as Java.

One of the available language is Python, making it very easy to generate very complex
applications in a suite format, as this enables the use of the full Python standard library.

Using the full Python standard library give access to elements such as
cryptography; opening external files, including ZIP files; or connecting to
remote databases. Also, take advantage of the Python syntax and avoid
dealing with LibreOffice BASIC.

We'll see in this recipe how to add an external Python file as a macro that will change the
contents of a spreadsheet.

Fun with Spreadsheets Chapter 6

[218]

Getting ready
LibreOffice needs to be installed. It is available at https:/ /www. libreoffice. org/ .

Once downloaded and installed, it needs to be configured to allow the execution of macros:

Go to Settings | Security to find the Macro Security details:1.

Fun with Spreadsheets Chapter 6

[219]

Open Macro Security and select Medium to allow execution of our macros. This2.
will display a warning before allowing us to run a macro:

To insert the macro into the file, we'll use a script called include_macro.py, which is
available at https:/ / github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/
master/Chapter06/ include_ macro. py. The script with the macro is also available as
libreoffice_script.py here:

https://github.com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter06/libreoffice_ script. py.

The file to put the script into, called movies.ods, is also available here: https:/ /github.
com/PacktPublishing/ Python- Automation- Cookbook/ blob/ master/ Chapter06/ movies.
ods. It contains, in the .ods format (LibreOffice format), a table with the 10 movies with
highest admissions. Data is extracted from here:

http://www.mrob. com/ pub/ film- video/ topadj. html.

Fun with Spreadsheets Chapter 6

[220]

How to do it...
Use the include_macro.py script to attach the libreoffice_script.py to1.
the file movies.ods macrofile:

$ python include_macro.py -h
usage: It inserts the macro file "script" into the file "spreadsheet"
in .ods format. The resulting file is located in the macro_file
directory, that will be created
 [-h] spreadsheet script

positional arguments:
 spreadsheet File to insert the script
 script Script to insert in the file

optional arguments:
 -h, --help show this help message and exit

$ python include_macro.py movies.ods libreoffice_script.py

Open the resulting file, macro_file/movies.ods, in LibreOffice. Notice that it2.
shows a warning to enable the macros (click on Enable). Go to Tools | Macros |
Run Macro:

Fun with Spreadsheets Chapter 6

[221]

Select the ObtainAggregated under movies.ods |3.
libreoffice_script macro and click on Run. It calculates the aggregated
admissions and stores them in cell B12. It adds a Total label in A15:

Fun with Spreadsheets Chapter 6

[222]

Repeat steps 2 and 3 to run it again. Now it runs all the aggregations, but adds4.
B12 and gets the result in B13:

How it works...
The main work in step 1 is done in the include_macro.py script. It copies the file into
the macro_file subdirectory to avoid modifying the input.

Internally, an.ods file is a ZIP file with a certain structure. The script takes advantage of
the ZIP file Python module to add the script in the proper subdirectory internally. It also
modifies the manifest.xml file to allow LibreOffice to know there's a script inside the file.

The macro that is executed in step 3 is defined in libreoffice_script.py and contains a
single function:

def ObtainAggregated(*args):
 """Prints the Python version into the current document"""
 # get the doc from the scripting context
 # which is made available to all scripts
 desktop = XSCRIPTCONTEXT.getDesktop()

Fun with Spreadsheets Chapter 6

[223]

 model = desktop.getCurrentComponent()
 # get the first sheet
 sheet = model.Sheets.getByIndex(0)

 # Find the admissions column
 MAX_ELEMENT = 20
 for column in range(0, MAX_ELEMENT):
 cell = sheet.getCellByPosition(column, 0)
 if 'Admissions' in cell.String:
 break
 else:
 raise Exception('Admissions not found')

 accumulator = 0.0
 for row in range(1, MAX_ELEMENT):
 cell = sheet.getCellByPosition(column, row)
 value = cell.getValue()
 if value:
 accumulator += cell.getValue()
 else:
 break

 cell = sheet.getCellByPosition(column, row)
 cell.setValue(accumulator)

 cell = sheet.getCellRangeByName("A15")
 cell.String = 'Total'
 return None

The variable XSCRIPTCONTEXT is created automatically and allowed to get the current
component, and from there, the first Sheet. After that, the sheet is iterated to find the
Admissions column through .getCellByPosition and obtain the string value with the
.String attribute. With the same method, it aggregates all the values in the column,
extracting them through .getValue to get their numerical values.

As the loop iterates through the column until finding an empty cell, the
second time it's executed it will aggregate the value in B12, which is the
aggregated value in the previous execution. This is done on purpose to
show that macros can be executed multiple times, with different results.

Cells can also be referenced by their string position through .getCellRangeByName, to
store Total in cell A15.

Fun with Spreadsheets Chapter 6

[224]

There's more...
The Python interpreter is embedded into LibreOffice, meaning that the specific version can
change if LibreOffice changes. In the latest version of LibreOffice at the time of writing this
book (6.0.5), the version included was Python 3.5.1.

The UNO interface is very complete and allows you to access a lot of advanced elements.
Unfortunately, the documentation is not great, and achieving it can be complicated and
time consuming. The documentation is defined in Java or C++, and there are examples in
LibreOffice BASIC or other languages, but few for Python. The full documentation can be
found at: https:/ /api. libreoffice. org/ , and the reference is here:

https://api.libreoffice. org/ docs/ idl/ ref/index. html.

For example, it is possible to create complex charts or even interactive
dialogs that ask for and process responses from the user. There's a lot of
information in forums and old answers. The code in BASIC is also
adaptable to Python most of the time.

LibreOffice is a fork of a previous project called OpenOffice. UNO was already available,
meaning that some references will be found when searching the internet that refer to
OpenOffice.

Remember that LibreOffice is capable of reading and writing Excel files. Some features may
not be 100% compatible; for example, there may be formatting issues.

For the same reason, it is totally possible to generate a file in Excel format
with the tools described in other recipes of this chapter and open it with
LibreOffice. That can be a good approach as the documentation is better
for openpyxl.

Debugging can also be tricky on occasion. Remember to ensure that a file is fully closed
before reopening it with new code.

UNO is also capable of working with other parts of the LibreOffice suite, such as for
creating documents.

See also
The Writing a CSV spreadsheet recipe
The Updating an Excel spreadsheet and adding comments and formulas recipe

7
Developing Stunning Graphs

The following recipes will be covered in this chapter:

Plotting a simple sales graph
Drawing stacked bars
Plotting pie charts
Displaying multiple lines
Drawing a scatter plot
Visualizing maps
Adding legends and annotations
Combining graphs
Saving charts

Introduction
Graphs and images are fantastic ways of presenting complex data in a way that's easily
understandable. In this chapter, we will make use of the powerful matplotlib library to
learn how to create all kinds of graphs. matplotlib is a library that's aimed at displaying
data in multiple ways, and it can create absolute stunning plots that will help transmit and
display information in the best way.

The graphs we'll cover will go from simple bar graphs to line or pie charts, and combine
multiple plots in the same graph, annotate them, or even draw geographical maps.

Plotting a simple sales graph
In this recipe, we'll see how to draw a sales graph by drawing bars proportional to sales in
different periods.

Developing Stunning Graphs Chapter 7

[226]

Getting ready
We can install matplotlib in our virtual environment using the following commands:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

In some OSes, this may require us to install additional packages; for example, in Ubuntu it
may require us to run apt-get install python3-tk. Check the matplolib docs for
details.

If you are using macOS, it's possible that you'll get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data to be displayed on the graph:2.

>>> DATA = (
... ('Q1 2017', 100),
... ('Q2 2017', 150),
... ('Q3 2017', 125),
... ('Q4 2017', 175),
...)

Split the data into usable formats for the graph. This is a preparation step:3.

>>> POS = list(range(len(DATA)))
>>> VALUES = [value for label, value in DATA]
>>> LABELS = [label for label, value in DATA]

Create a bar graph with the data:4.

>>> plt.bar(POS, VALUES)
>>> plt.xticks(POS, LABELS)
>>> plt.ylabel('Sales')

Display the graph:5.

>>> plt.show()

Developing Stunning Graphs Chapter 7

[227]

The result will be displayed as follows in a new window:6.

How it works...
After importing the module, the data is presented in step 2 from the How to do it… section in
a convenient way, which will likely be similar to the way the data was originally stored.

Because of the way matplotlib works, it requires an X component as well as a Y
component. In this case, our X component is just a sequence of integers, as many as data
points. We create that in POS. In VALUES, we store the numeric value of the sales as a
sequence, and in LABELS the associated label for each data point. All that preparation work
is done in step 3.

Step 4 creates the bar graph, with the sequences X (POS) and Y (VALUES). These define our
bars. To specify the period it refers to, we put labels on the x axis for each value with
.xticks in the same way. To clarify the meaning, we add a label with .ylabel.

To display the resulting graph, step 5 calls .show, which opens a new window with the
result.

Developing Stunning Graphs Chapter 7

[228]

Calling .show blocks the execution of the program. The program will
resume when the window is closed.

There's more...
You may want to change the format in which the values are presented. In our example,
maybe the numbers represent millions of dollars. To do so, you can add a formatter to the y
axis, so the values represented there will have it applied to them:

>>> from matplotlib.ticker import FuncFormatter

>>> def value_format(value, position):
... return '$ {}M'.format(int(value))

>>> axes = plt.gca()
>>> axes.yaxis.set_major_formatter(FuncFormatter(value_format))

value_format is a function that returns a value based on the value and position of the
data. Here, it will return the value 100 as $ 100 M.

Values will be retrieved as floats, requiring you to transform them into
integers for display.

To apply the formatter, we need to retrieve the axis object with .gca (get current axes).
Then, the .yaxis gets the formatter.

The color of the bars can also be determined with the color parameter. Colors can be
specified in multiple formats, as described in https:/ /matplotlib. org/ api/ colors_ api.
html, but my favorite is following the XKCD color survey, using the xkcd: prefix (no space
after the colon):

>>> plt.bar(POS, VALUES, color='xkcd:moss green')

The full survey can be found here: https:/ /xkcd. com/ color/ rgb/ .

Most common colors, such as blue or red, are also available for quick tests.
They tend to be a little bright to be used in good-looking reports, though.

Developing Stunning Graphs Chapter 7

[229]

Combining the color with formatting the axis gives the following result:

Bar graphs don't need to display information in a temporal way. As we've
seen, matplotlib requires us to specify the X parameter of each bar. That's a powerful tool
to generate all kinds of graphs.

For example, the bars can be arranged to display a histogram, such as for
displaying people of a certain height. The bars will start at a low height,
increase to the average size, and then drop back. Don't limit yourself to
just spreadsheet charts!

The full matplotlib documentation can be found here: https:/ /matplotlib. org/.

See also
The Drawing stacked bars recipe
The Adding legends and annotations recipe
The Combining graphs recipe

Developing Stunning Graphs Chapter 7

[230]

Drawing stacked bars
A powerful way of displaying different categories is to present them as stacked bars, so
each of the categories and the total are displayed. We'll see in this recipe how to do that.

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this: RuntimeError:
Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data. This represents two products' sales, one established, and a new2.
one:

>>> DATA = (
... ('Q1 2017', 100, 0),
... ('Q2 2017', 105, 15),
... ('Q3 2017', 125, 40),
... ('Q4 2017', 115, 80),
...)

Process the data to prepare the expected format:3.

>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valueA, valueB in DATA]
>>> VALUESB = [valueB for label, valueA, valueB in DATA]
>>> LABELS = [label for label, value1, value2 in DATA]

Developing Stunning Graphs Chapter 7

[231]

Create the bar plot. Two plots are required:4.

>>> plt.bar(POS, VALUESB)
>>> plt.bar(POS, VALUESA, bottom=VALUESB)
>>> plt.ylabel('Sales')
>>> plt.xticks(POS, LABELS)

Display the graph:5.

>>> plt.show()

The result will be displayed in a new window as follows:6.

How it works...
After importing the module, the data is presented in step 2 in a convenient way, which will
likely be similar to the way the data was originally stored.

Developing Stunning Graphs Chapter 7

[232]

In step 3, the data is prepared in three sequences, VALUESA, VALUEB, and LABELS. A POS
sequence to correctly position the bars is added.

Step 4 creates the bar graph, with the sequences X (POS) and Y (VALUESB). The second bar
sequence, VALUESA, is added on top of the previous one, using the bottom parameter. This
stacks the bars.

Notice that we stack the second value, VALUESB, first. The second value
represents a new product introduced in the market, while VALUESA is
more stable. This better shows the growth of the new product.

Each of the periods is labeled on the X axis with .xticks. To clarify the meaning, we add a
label with .ylabel.

To display the resulting graph, step 5 calls .show, which opens a new window with the
result.

Calling .show blocks the execution of the program. The program will
resume when the window is closed.

There's more...
Another way of presenting stacked bars is adding them as percentages, so the total doesn't
change, only the relative sizes compared to each other.

To do that, VALUESA and VALUEB need to be calculated relative to the percentages in this
way:

>>> VALUESA = [100 * valueA / (valueA + valueB) for label, valueA,
valueB in DATA]
>>> VALUESB = [100 * valueB / (valueA + valueB) for label, valueA,
valueB in DATA]

Developing Stunning Graphs Chapter 7

[233]

This makes each value equal to the percentage of the total, and the total always adds up to
100. This produces the following graphic:

The bars doesn't necessarily need to be stacked. Sometimes, it may be interesting to present
the bars one against the other for comparison.

To do that, we need to move the position of the second bar sequence. We'll need also to set
thinner bars to allow space:

>>> WIDTH = 0.3
>>> plt.bar([p - WIDTH / 2 for p in POS], VALUESA, width=WIDTH)
>>> plt.bar([p + WIDTH / 2 for p in POS], VALUESB, width=WIDTH)

Developing Stunning Graphs Chapter 7

[234]

Note how the width of the bar is set to a third of the space, as our reference space is 1
between the bars. The first bar is moved to the left and the second to the right to center
them. The bottom argument has been deleted to not stack the bars:

The full matplotlib documentation can be found here: https:/ /matplotlib. org/ .

See also
The Plotting a simple sales graph recipe
The Adding legends and annotations recipe
The Combining graphs recipe

Plotting pie charts
Pie charts! A Business 101 favorite, and a common way of presenting percentages. We'll see
in this recipe how to plot a pie chart, with different slices representing proportions.

Developing Stunning Graphs Chapter 7

[235]

Getting ready
We need to install matplotlib in our virtual environment using the following commands:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplotlib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data. This represents several lines of products:2.

>>> DATA = (
... ('Common', 100),
... ('Premium', 75),
... ('Luxurious', 50),
... ('Extravagant', 20),
...)

Process the data to prepare the expected format:3.

>>> VALUES = [value for label, value in DATA]
>>> LABELS = [label for label, value in DATA]

Create the pie chart:4.

>>> plt.pie(VALUES, labels=LABELS, autopct='%1.1f%%')
>>> plt.gca().axis('equal')

Display the graph:5.

>>> plt.show()

Developing Stunning Graphs Chapter 7

[236]

The result will be displayed in a new window as follows:6.

How it works...
The module is imported in step 1 of the How to do it… section, and the data to present is
imported in step 2. The data is separated into two components, a list of VALUES and a list of
LABELS, in step 3.

The creation of the chart happens in step 4. The pie chart is created by adding VALUES and
LABELS. The autopct parameter formats the value so it displays it as a percentage to a
single decimal place.

The call to axis ensure the pie chart will look round, instead of having a bit of perspective
and appearing as an oval.

To display the resulting graph, step 5 calls .show, which opens a new window with the
result.

Developing Stunning Graphs Chapter 7

[237]

Calling .show blocks the execution of the program. The program will
resume when the window is closed.

There's more...
Pie charts are a little overused in business graphs. Most of the time, a bar chart with
percentages or values will be a better way of visualizing the data, especially if more than
two or three options are displayed. Try to limit the use of pie charts in your reports and
data presentations.

Rotating the start of the wedges is possible with the startangle parameter, and the
direction to set up the wedges is defined by counterclock (defaults to True):

>>> plt.pie(VALUES, labels=LABELS, startangle=90, counterclock=False)

The format inside the label can be set by a function. As the value inside the pie is defined as
a percentage, finding the original value can be a little tricky. The following snippet creates a
dictionary indexing by its percentage as an integer, so we can retrieve the referenced
value. Please note that this assumes that no percentage gets repeated. If that's the case, the
labels may be slightly incorrect. In that case, we may need to use up to the first decimal
place for better precision:

>>> from matplotlib.ticker import FuncFormatter

>>> total = sum(value for label, value in DATA)
>>> BY_VALUE = {int(100 * value / total): value for label, value in
DATA}

>>> def value_format(percent, **kwargs):
... value = BY_VALUE[int(percent)]
... return '{}'.format(value)

One or more wedges can also be separated by using the explode parameter. This specifies
how separated the wedge is from the center:

>>> explode = (0, 0, 0.1, 0)
>>> plt.pie(VALUES, labels=LABELS, explode=explode,
autopct=value_format,
 startangle=90, counterclock=False)

Developing Stunning Graphs Chapter 7

[238]

Combining all these options, we get the following result:

The full matplotlib documentation can be found here: https:/ /matplotlib. org/.

See also
The Plotting a simple sales graph recipe
The Drawing stacked bars recipe

Displaying multiple lines
This recipe will show how to display multiple lines in a graph.

Developing Stunning Graphs Chapter 7

[239]

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data. This represents two products' sales:2.

>>> DATA = (
... ('Q1 2017', 100, 5),
... ('Q2 2017', 105, 15),
... ('Q3 2017', 125, 40),
... ('Q4 2017', 115, 80),
...)

Process the data to prepare the expected format:3.

>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valueA, valueB in DATA]
>>> VALUESB = [valueB for label, valueA, valueB in DATA]
>>> LABELS = [label for label, value1, value2 in DATA]

Create the line plot. Two lines are required:4.

>>> plt.plot(POS, VALUESA, 'o-')
>>> plt.plot(POS, VALUESB, 'o-')
>>> plt.ylabel('Sales')
>>> plt.xticks(POS, LABELS)

Display the graph:5.

>>> plt.show()

Developing Stunning Graphs Chapter 7

[240]

The result will be displayed in a new window:6.

How it works...
In the How to do it… section, step 1 imports the module and step 2 shows the data to be
plotted in a formatted way.

In step 3, the data is prepared in three sequences, VALUESA, VALUEB, and LABELS.
A POS sequence to correctly position each point is added.

Step 4 creates the graph, with the sequences X (POS) and Y (VALUESA), and then POS and
VALUESB. The value of 'o-' is added to draw a circle on each of the data points and a full
line between them.

By default, the plot will display a solid line, with no marker on each point.
If only the marker is used (that is, 'o'), there'll be no line.

Developing Stunning Graphs Chapter 7

[241]

Each of the periods is labeled on the X axis with .xticks. To clarify the meaning, we add a
label with .ylabel.

To display the resulting graph, step 5 calls .show, which opens a new window with the
result.

Calling .show blocks the execution of the program. The program will
resume when the window is closed.

There's more...
Graphs with lines are deceptively simple and able to create a lot of interesting
representations. It is probably the most convenient when showing mathematical graphs.
For example, we can display a graph showing Moore's Law in a few lines of code.

Moore's Law is an observation by Gordon Moore that the number of
components in an integrated circuit doubles every two years. It was first
described in 1965 and then corrected in 1975. It seems to be quite close to
the historic rate of technological advancement over the last 40 years.

We first create a line describing the theoretical line, with data points from 1970 to 2013.
Starting with 1000 transistors, we double it every two years, up to 2013:

>>> POS = [year for year in range(1970, 2013)]
>>> MOORES = [1000 * (2 ** (i * 0.5)) for i in range(len(POS))]
>>> plt.plot(POS, MOORES)

Following some documentation, we extract a few examples of commercial CPUs, their year
of release, and their number of integrated components from here: http:/ /www. wagnercg.
com/Portals/0/FunStuff/ AHistoryofMicroprocessorTransistorCount. pdf. Due to the
big numbers, we'll use the notation of 1_000_000 for a million, available in Python 3:

>>> DATA = (
... ('Intel 4004', 2_300, 1971),
... ('Motorola 68000', 68_000, 1979),
... ('Pentium', 3_100_000, 1993),
... ('Core i7', 731_000_000, 2008),
...)

Developing Stunning Graphs Chapter 7

[242]

Draw a line with markers to display those points at the proper places. The 'v' mark will
display a triangle:

>>> data_x = [x for label, y, x in DATA]
>>> data_y = [y for label, y, x in DATA]
>>> plt.plot(data_x, data_y, 'v')

For each data point, append a label in the proper place with the name of the CPU:

>>> for label, y, x in DATA:
>>> plt.text(x, y, label)

Finally, growth doesn't make sense displayed in a linear graph, so we change the scale to be
logarithmic, which makes exponential growth look like a straight line. But to keep the sense
of dimension, add a grid. Call .show to display the graph:

>>> plt.gca().grid()
>>> plt.yscale('log')

The resulting graph will be displayed:

Developing Stunning Graphs Chapter 7

[243]

The full matplotlib documentation can be found here: https:/ /matplotlib. org/. In
particular, check the available formats for the lines (solid, dashed, dotted, and so on) and
markers (dot, circle, triangle, star, and so on) here: https:/ /matplotlib. org/api/ _as_ gen/
matplotlib.pyplot. plot. html.

See also
The Adding legends and annotations recipe
The Combining graphs recipe

Drawing a scatter plot
A scatter plot is one where the information is only displayed as dots with X and Y values.
They are very useful when presenting samples and to see whether there's any relationship
between two variables. In this recipe, we'll display a graph plotting time spent on a website
against money spent, to see whether we can see a pattern.

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

As data points, we'll use the scatter.csv file to read the data. This file is available on
GitHub at https://github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/
master/Chapter07/ scatter. csv.

Developing Stunning Graphs Chapter 7

[244]

How to do it...
Import matplotlib and csv. FuncFormatter is also imported to format the1.
axes later:

>>> import csv
>>> import matplotlib.pyplot as plt
>>> from matplotlib.ticker import FuncFormatter

Prepare the data, reading from the file using the csv module:2.

>>> with open('scatter.csv') as fp:
... reader = csv.reader(fp)
... data = list(reader)

Prepare the data for plotting, and then plot it:3.

>>> data_x = [float(x) for x, y in data]
>>> data_y = [float(y) for x, y in data]
>>> plt.scatter(data_x, data_y)

Improve the context by formatting the axes:4.

>>> def format_minutes(value, pos):
... return '{}m'.format(int(value))
>>> def format_dollars(value, pos):
... return '${}'.format(value)
>>> plt.gca().xaxis.set_major_formatter(FuncFormatter(format_minutes))
>>> plt.xlabel('Time in website')
>>> plt.gca().yaxis.set_major_formatter(FuncFormatter(format_dollars))
>>> plt.ylabel('Spending')

Show the graph:5.

>>> plt.show()

Developing Stunning Graphs Chapter 7

[245]

The result will be displayed in a new window:6.

How it works...
Steps 1 and 2 of the How to do it… section import the modules we'll use later and read the
data from the CSV file. The data is transformed into a list to allow us to iterate through it
several times, as that's necessary in step 3.

Step 3 prepares the data in two arrays, and then uses .scatter to plot them. The
parameters for .scatter, as with other methods of matplotlib, require an array of X and
Y values. They both need to have the same size. The data is converted into float from the
file format, to ensure the number format.

Step 4 refines the way the data is presented on each of the axis. The same operation is
presented twice—a function is created that define how the values on that axis should be
displayed (in dollars or in minutes). The function accepts as input the value to display and
the position. Typically, the position will be ignored. The axis formatter will be overwritten
with .set_major_formatter. Notice that both axes are returned with .gca (get current
axes).

Developing Stunning Graphs Chapter 7

[246]

A label is added to the axes with .xlabel and .ylabel.

Finally, step 5 displays the graph in a new window. Analyzing the result, we can say that
there seem to be two kinds of users, ones who spend less that 10 minutes and never spend
more than $10, and users who spend more time and also have a higher chance of spending
up to $100.

Note that the data presented is synthetic, and it has been generated with
the result in mind. Real-life data will probably look more spread out.

There's more...
A scatter plot can display not only points in two dimensions, but also add a third (area) and
even a fourth dimension (color).

To add those elements, use the parameters s for size and c for color.

Size is defined as the diameter of a ball in points squared. So, for a ball of
diameter 10, 100 will be used. Color can use any of the usual definitions of
color in matplotlib, such as hex color, RGB, and so on. See the
documentation for more details: https:/ /matplotlib. org/ users/
colors. html.

For example, we can generate a random graph using the four dimensions in the following way:
>>> import matplotlib.pyplot as plt
>>> import random
>>> NUM_POINTS = 100
>>> COLOR_SCALE = ['#FF0000', '#FFFF00', '#FFFF00', '#7FFF00',
'#00FF00']
>>> data_x = [random.random() for _ in range(NUM_POINTS)]
>>> data_y = [random.random() for _ in range(NUM_POINTS)]
>>> size = [(50 * random.random()) ** 2 for _ in range(NUM_POINTS)]
>>> color = [random.choice(COLOR_SCALE) for _ in range(NUM_POINTS)]
>>> plt.scatter(data_x, data_y, s=size, c=color, alpha=0.5)
>>> plt.show()

Developing Stunning Graphs Chapter 7

[247]

COLOR_SCALE goes from green to red, and the size of each of the points will be between 0
and 50 points in diameter. The result should be something like this:

Note that it is random, so each time it will generate a different graph.

The alpha value makes each of the points semitransparent, allowing us to see where they
overlap. The higher this value is, the less transparent the points will be. This parameter will
affect the displayed color, as it will blend the point with the background.

Even though it's possible to display two independent values in the size
and color, they can also be related to any of the other values. For example,
making the color dependent on the size will make all the points of the
same size the same color, which may help distinguish the data. Remember
that the ultimate goal of a graph is to make data easy to understand. Try
different approaches to improve this.

The full matplotlib documentation can be found here: https:/ /matplotlib. org/.

Developing Stunning Graphs Chapter 7

[248]

See also
The Displaying multiple lines recipe
The Adding legends and annotations recipe

Visualizing maps
To show information that changes from region to region, the best way is to display a map
that presents the information, while at the same time giving a regional sense of position and
location for the data.

In this recipe, we'll make use of the fiona module to import GIS information, as well as
matplotlib to display the information. We will display a map of Western Europe and
display the population of each country with a color grade. The darker the color, the larger
the population.

Getting ready
We need to install matplotlib and fiona in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ echo "Fiona==1.7.13" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

The map data needs to be downloaded. Fortunately, there's a lot of freely available data for
geographic information. A search on Google should quickly return almost everything you
need, including detailed information on regions, counties, rivers, or any other kind of data.

GIS information is available in different formats from a lot of public
organizations. fiona is capable of understanding most common formats
and treating them in equivalent ways, but there are small differences.
Read the fiona documentation for more details.

Developing Stunning Graphs Chapter 7

[249]

The data we'll use in this recipe, covering all European countries, is available on GitHub at
the following URL: https:/ /github. com/ leakyMirror/ map- of- europe/ blob/ master/
GeoJSON/europe.geojson. Note it is in GeoJSON, which is an easy standard to work with.

How to do it...
Import the modules to be used later:1.

>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm
>>> import fiona

Load the population of the countries to display. The population has been:2.

>>> COUNTRIES_POPULATION = {
... 'Spain': 47.2,
... 'Portugal': 10.6,
... 'United Kingdom': 63.8,
... 'Ireland': 4.7,
... 'France': 64.9,
... 'Italy': 61.1,
... 'Germany': 82.6,
... 'Netherlands': 16.8,
... 'Belgium': 11.1,
... 'Denmark': 5.6,
... 'Slovenia': 2,
... 'Austria': 8.5,
... 'Luxembourg': 0.5,
... 'Andorra': 0.077,
... 'Switzerland': 8.2,
... 'Liechtenstein': 0.038,
... }
>>> MAX_POPULATION = max(COUNTRIES_POPULATION.values())
>>> MIN_POPULATION = min(COUNTRIES_POPULATION.values())

Developing Stunning Graphs Chapter 7

[250]

Prepare the colormap, which will determine the color each country will be3.
displayed in a shade of green. Calculate which color corresponds to each
country:

>>> colormap = cm.get_cmap('Greens')
>>> COUNTRY_COLOUR = {
... country_name: colormap(
... (population - MIN_POPULATION) / (MAX_POPULATION -
MIN_POPULATION)
...)
... for country_name, population in COUNTRIES_POPULATION.items()
... }

Open the file and read the data, filtering by the countries we defined the4.
population of in step 1:

>>> with fiona.open('europe.geojson') as fd:
>>> full_data = [data for data in full_data
... if data['properties']['NAME'] in
COUNTRIES_POPULATION]

Plot each of the countries in the proper color:5.

>>> for data in full_data:
... country_name = data['properties']['NAME']
... color = COUNTRY_COLOUR[country_name]
... geo_type = data['geometry']['type']
... if geo_type == 'Polygon':
... data_x = [x for x, y in data['geometry']['coordinates'][0]]
... data_y = [y for x, y in data['geometry']['coordinates'][0]]
... plt.fill(data_x, data_y, c=color)
... elif geo_type == 'MultiPolygon':
... for coordinates in data['geometry']['coordinates']:
... data_x = [x for x, y in coordinates[0]]
... data_y = [y for x, y in coordinates[0]]
... plt.fill(data_x, data_y, c=color)

Display the result:6.

>>> plt.show()

Developing Stunning Graphs Chapter 7

[251]

The result will be displayed in a new window:7.

How it works...
After importing the modules in step 1 from the How to do it… section, the data to be
displayed is defined in step 2. Note that the names need to be in the same format as they'll
be in the GEO file. The minimum and maximum populations are calculated to properly
balance the range later.

The population has been rounded to a significant number, and it's defined
in millions. Only a few countries have been defined for the purposes of
this recipe, but there are more available in the GIS file and the map can be
extended toward the East.

Developing Stunning Graphs Chapter 7

[252]

A colormap defining the color range in shades of green (Greens) is described in step 3.
This is one standard colormap in matplotlib, but others described in the documentation
can be used (https:/ / matplotlib. org/ examples/ color/ colormaps_ reference. html), such
as oranges, reds, or plasma for a more cold-to-hot approach.

The COUNTRY_COLOUR dictionary stores the color defined by the colormap for each
country. The population is reduced to a number from 0.0 (least population) to 1.0 (most),
and passed to colormap to retrieve the color at the scale it corresponds to.

The GIS information is then retrieved in step 4. The europe.geojson file is read using
fiona and the data is copied so we can use it in the next steps. It also filters to only deal
with the countries we defined the population of, so no extra countries are plotted.

The loop in step 5 goes country by country, and then we plot it using .fill, which plots a
polygon. The geometry of each of the different countries is either a single polygon
(Polygon) or more than one (MultiPolygon). In each case, the proper polygons are drawn,
all in the same color. This means MultiPolygon is drawn several times.

GIS information is stored as points for coordinates describing the latitude
and longitude of the point. Areas, such as countries, have a list of
coordinates that describe an area within them. Some maps are more
precise and have more points defining areas. Multiple polygons may be
required to define a country, as some parts may be separated from each
other, islands being the most obvious cases, but there are also enclaves.

Finally, the data is displayed by calling .show.

There's more...
Taking advantage of the information contained in the GIS file, we can add extra
information to the map. The properties object contains information about the name of the
country, but also its ISO name, FID code, and central location as LON and LAT. We can use
this information to display the name of the country using .text:

 long, lat = data['properties']['LON'], data['properties']['LAT']
 iso3 = data['properties']['ISO3']
 plt.text(long, lat, iso3, horizontalalignment='center')

Developing Stunning Graphs Chapter 7

[253]

This code will live inside the loop in step 6 in the How to do it… section.

If you analyze the file, you'll see that the properties object contains
information about the population, stored as POP2005, so you can draw the
population info directly from the map. That is left as an exercise. Different
map files will contain different information, so be sure to play around to
unleash all the possibilities.

Also, you may notice that the map may be distorted in some cases. matplotlib will try to
present it in a square box, and if the map is not roughly square, this will be evident. For
example, try to display only Spain, Portugal, Ireland, and the UK. We can force the graph to
present 1 point of latitude with the same space as 1 point of longitude, which is a good
approach if we are not drawing something near the poles. This is achieved by calling
.set_aspect in the axes. Current axes can be obtained through .gca (get current axes)

>>> axes = plt.gca()
>>> axes.set_aspect('equal', adjustable='box')

Also, to improve the look of the map, we can set up a background color that helps to
differentiate between the background and the foreground, and remove the labels in the
axes, as printing the latitude and longitude is probably distracting. Removing the labels on
the axes is achieved by setting empty labels with .xticks and .yticks. The background
color is mandated by the foreground color of the axes:

>>> plt.xticks([])
>>> plt.yticks([])
>>> axes = plt.gca()
>>> axes.set_facecolor('xkcd:light blue')

Finally, to better differentiate between the different regions, a line surrounding each area
can be added. This can be done by drawing a thin line with the same data as .fill, right
after. Notice that this code is repeated twice in step 2:

 plt.fill(data_x, data_y, c=color)
 plt.plot(data_x, data_y, c='black', linewidth=0.2)

Developing Stunning Graphs Chapter 7

[254]

Applying all these elements to the map, it now looks like this:

The resulting code is available on GitHub here: https:/ /github. com/ PacktPublishing/
Python-Automation- Cookbook/ blob/ master/ Chapter07/ visualising_ maps. py.

Developing Stunning Graphs Chapter 7

[255]

As we've seen, maps are drawn as general polygons. Don't be afraid to
include other geometrical forms. You can define your own polygons and
print them with .fill or some extra labels. For example, far away
regions may need to be transported to avoid having too big a map. Or,
rectangles can be used to print extra information on top of parts of the
map.

The full fiona documentation can be found here: http:/ /toblerity. org/ fiona/ . The
full matplotlib documentation can be found here: https:/ /matplotlib. org/.

See also
The Adding legends and annotations recipe
The Combining graphs recipe

Adding legends and annotations
When drawing graphs with dense information, a legend may be required to determine the
specific colors or help better understand the data presented. In matplotlib, legends can be
pretty rich and have multiple ways of presenting them. Annotations to draw attention to
specific points are also good ways to focus the message for the audience.

In this recipe, we'll create a graph with three different components and display a legend
with information to better understand it, as well as annotating the most interesting points
on our graph.

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

Developing Stunning Graphs Chapter 7

[256]

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data to be displayed on the graph, and the legends that should be2.
displayed. Each of the lines is composed of the time label, sales of ProductA,
sales of ProductB, and sales of ProductC:

>>> LEGEND = ('ProductA', 'ProductB', 'ProductC')
>>> DATA = (
... ('Q1 2017', 100, 30, 3),
... ('Q2 2017', 105, 32, 15),
... ('Q3 2017', 125, 29, 40),
... ('Q4 2017', 115, 31, 80),
...)

Split the data into usable formats for the graph. This is a preparation step:3.

>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valueA, valueB, valueC in DATA]
>>> VALUESB = [valueB for label, valueA, valueB, valueC in DATA]
>>> VALUESC = [valueC for label, valueA, valueB, valueC in DATA]
>>> LABELS = [label for label, valueA, valueB, valueC in DATA]

Create a bar graph with the data:4.

>>> WIDTH = 0.2
>>> plt.bar([p - WIDTH for p in POS], VALUESA, width=WIDTH)
>>> plt.bar([p for p in POS], VALUESB, width=WIDTH)
>>> plt.bar([p + WIDTH for p in POS], VALUESC, width=WIDTH)
>>> plt.ylabel('Sales')
>>> plt.xticks(POS, LABELS)

Add an annotation displaying the maximum growth in the chart:5.

>>> plt.annotate('400% growth', xy=(1.2, 18), xytext=(1.3, 40),
 horizontalalignment='center',
 arrowprops=dict(facecolor='black', shrink=0.05))

Developing Stunning Graphs Chapter 7

[257]

Add the legend:6.

>>> plt.legend(LEGEND)

Display the graph:7.

>>> plt.show()

The result will be displayed in a new window:8.

How it works...
Steps 1 and 2 of the How to do it… section prepare the imports and the data that will be
displayed in the bar, in a format similar to what well-structured input data will look like. In
step 3, the data is split into different arrays to prepare the input in matplotlib. Basically,
each data sequence is stored in a different array.

Developing Stunning Graphs Chapter 7

[258]

Step 4 draws the data. Each data sequence gets a call to .bar, specifying its position and
values. Labels do the same as .xticks. To separate each of the bars around the labels, the
first one is displaced to the left and the third to the right.

An annotation is added above the bar for ProductC in the second quarter. Note that the
annotation includes the point in xy and the text location in xytext.

In step 6, the legend is added. Notice that the labels need to be added in the same order as
the data was input. The legend is located automatically in an area that doesn't cover any
data. arroprops details the arrow to point to the data.

Finally, the graph is drawn in step 7 by calling .show.

Calling .show blocks the execution of the program. The program will
resume when the window is closed.

There's more...
Legends will be display automatically in most cases with just a call to .legend. If you need
to customize the order in which they appear, you may refer each label to a specific element.
For example, this way (note it calls ProductA the valueC series)

>>> valueA = plt.bar([p - WIDTH for p in POS], VALUESA, width=WIDTH)
>>> valueB = plt.bar([p for p in POS], VALUESB, width=WIDTH)
>>> valueC = plt.bar([p + WIDTH for p in POS], VALUESC, width=WIDTH)
>>> plt.legend((valueC, valueB, valueA), LEGEND)

The location of the legend can also be changed manually, through the loc parameter. By
default, it is best and it will draw the legend over an area where there's the least overlap of
data (ideally none). But values such as right, upper left, and so on can be used, or a
specific (X, Y) tuple.

Developing Stunning Graphs Chapter 7

[259]

Another option is to plot the legend outside of the graph, using
the bbox_to_anchor option. In this case, the legend is attached to the (X, Y) of the
bounding box, where 0 is the bottom-left corner of the graph and 1 is the upper-right
corner. This may cause the legend to be clipped by the external border, so you may need to
adjust where the graph starts and ends with .subplots_adjust:

>>> plt.legend(LEGEND, title='Products', bbox_to_anchor=(1, 0.8))
>>> plt.subplots_adjust(right=0.80)

Adjusting the bbox_to_anchor parameter and .subplots_adjust will require a little bit
of trial and error, until the expected result is produced.

.subplots_adjust references the positions as the position of the axis
where it will be displayed. This means that right=0.80 will leave 20% of
the screen on the right of the plot, while the default for left is 0.125,
meaning it leaves 12.5% of the space on the left of the plot. See the
documentation for further details: https:/ /matplotlib. org/ api/ _as_
gen/matplotlib. pyplot. subplots_ adjust. html.

The annotations can be done in different styles and can be tweaked with different options
regarding the way to connect and so on. For example, this code will create an arrow with
the fancy style connecting with a curve. The result is displayed here:

plt.annotate('400% growth', xy=(1.2, 18), xytext=(1.3, 40),
 horizontalalignment='center',
 arrowprops={'facecolor': 'black',
 'arrowstyle': "fancy",
 'connectionstyle': "angle3",
 })

In our recipe, we did not annotate to exactly the end of the bar (point (1.2, 15)), but slightly
above it, to give a little bit of breathing space.

Adjusting the exact point to annotate and where to locate the text will
require a bit of testing. The text was also positioned by looking for the best
place to not overlap the text with the bars. The font size and color can be
changed, using the fontsize and color parameters, in both the .legend
and .annotate calls.

Developing Stunning Graphs Chapter 7

[260]

Applying all these elements, the graph may look similar to this. This graph can be
replicated by calling the legend_and_annotation.py script available in GitHub
here: https://github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter07/adding_ legend_ and_ annotations. py:

The full matplotlib documentation can be found here: https:/ /matplotlib. org/. In
particular, the guide for legends is here: https:/ /matplotlib. org/ users/ legend_ guide.
html#plotting-guide- legend and for annotations it is here: https:/ /matplotlib. org/
users/annotations. html.

See also
The Drawing stacked bars recipe
The Combining graphs recipe

Developing Stunning Graphs Chapter 7

[261]

Combining graphs
More than one graph can be combined in the same graph. In this recipe, we'll see how to
present data in the same plot, on two different axes, and how to add more plots to the same
graph.

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data to be displayed on the graph and the legends that should be2.
displayed. Each of the lines is composed of the time label, sales of ProductA,
and sales of ProductB. Notice how ProductB has a much higher value than A:

>>> DATA = (
... ('Q1 2017', 100, 3000, 3),
... ('Q2 2017', 105, 3200, 5),
... ('Q3 2017', 125, 2900, 7),
... ('Q4 2017', 115, 3100, 3),
...)

Prepare the data in independent arrays:3.

>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valueA, valueB, valueC in DATA]
>>> VALUESB = [valueB for label, valueA, valueB, valueC in DATA]
>>> VALUESC = [valueC for label, valueA, valueB, valueC in DATA]
>>> LABELS = [label for label, valueA, valueB, valueC in DATA]

Developing Stunning Graphs Chapter 7

[262]

Note that this expands and creates a list for each of the values.

The values can also be expanded with this—LABELS, VALUESA, VALUESB,
VALUESC = ZIP(*DATA)

Create a first subplot:4.

>>> plt.subplot(2, 1, 1)

Create a bar graph with information about VALUESA:5.

>>> valueA = plt.bar(POS, VALUESA)
>>> plt.ylabel('Sales A')

Create a different Y axis, and add information about VALUESB as a line plot:6.

>>> plt.twinx()
>>> valueB = plt.plot(POS, VALUESB, 'o-', color='red')
>>> plt.ylabel('Sales B')
>>> plt.xticks(POS, LABELS)

Create another subplot and fill it with VALUESC:7.

>>> plt.subplot(2, 1, 2)
>>> plt.plot(POS, VALUESC)
>>> plt.gca().set_ylim(ymin=0)
>>> plt.xticks(POS, LABELS)

Display the graph:8.

>>> plt.show()

The result will be displayed in a new window:9.

Developing Stunning Graphs Chapter 7

[263]

How it works...
After importing the module, the data is presented in step 2 in the How to do it… section in a
convenient way, which will likely be similar to the way the data was originally stored. Step
3 is a preparation step that splits the data into different arrays for the next steps.

Step 4 creates a new .subplot. This splits the full drawing into two elements. The
parameters are number of rows, columns, and selected subplot. So, we create two subplots
in a column and drew in the first one.

Step 5 prints a .bar plot in this subplot using VALUESA data, and labels the Y axis with
Sales A using .ylabel.

Step 6 creates a new Y axis with .twinx, drawing VALUESB now as a line plot through
.plot. The label is marked with .ylabel as Sales B. The X axis is labeled using
.xticks.

The VALUESB plot is set as red to avoid both plots having the same color.
By default, the first color is the same in both cases, and that will lead to
confusion. The data points are marked with the 'o' option.

Developing Stunning Graphs Chapter 7

[264]

In step 7, we changed to the second subplot using .subplot. The plot prints VALUESC as a
line, and again puts the labels on the X axis with .xticker and sets the minimum of the Y
axis to 0. The graph is then displayed in step 8.

There's more...
Plots with multiple axes are complicated to read as a general rule. Use them only when
there's a good reason to do so and the data is highly correlated.

By default, the Y axis in line plots will try to present information between
the minimum and maximum Y values. Truncating the axis is normally not
the best way to present information, as it can distort the perceived
differences. For example, changing values in the range from 10 to 11 can
look like a huge deal if the graph goes from 10 to 11, but this is less than
10%. Setting the Y axis minimum to 0
with plt.gca().set_ylim(ymin=0) is a good idea, especially with two
different axes.

The call to select the subplot will first go by row, then by column, so .subplot(2, 2, 3)
will select the subplot in the first column, second row.

The divided subplot grid can be changed. A first call to .subplot(2, 2, 1) and
.subplot(2, 2, 2), and then calling .subplot(2, 1, 2), will create a structure with
two small plots in the first row and a wider one in the second. Going back will overwrite
previously drawn subplots.

The full matplotlib documentation can be found here: https:/ /matplotlib. org/ . In
particular, the guide for legends is here: https:/ /matplotlib. org/ users/ legend_ guide.
html#plotting-guide- legend. For annotations, it is here: https:/ / matplotlib. org/ users/
annotations.html.

See also
The Drawing multiple lines recipe
The Visualizing maps recipe

Developing Stunning Graphs Chapter 7

[265]

Saving charts
Once a chart is ready, we can store it on the hard drive so it can be referenced in other
documents. We'll see in this recipe how to save charts in different formats.

Getting ready
We need to install matplotlib in our virtual environment:

$ echo "matplotlib==2.2.2" >> requirements.txt
$ pip install -r requirements.txt

If you are using macOS, it's possible that you get an error like this—RuntimeError:

Python is not installed as a framework. See the matplolib documentation on
how to fix it: https:/ / matplotlib. org/ faq/osx_ framework. html.

How to do it...
Import matplotlib:1.

>>> import matplotlib.pyplot as plt

Prepare the data to be displayed on the graph and split it into different arrays:2.

>>> DATA = (
... ('Q1 2017', 100),
... ('Q2 2017', 150),
... ('Q3 2017', 125),
... ('Q4 2017', 175),
...)
>>> POS = list(range(len(DATA)))
>>> VALUES = [value for label, value in DATA]
>>> LABELS = [label for label, value in DATA]

Create a bar graph with the data:3.

>>> plt.bar(POS, VALUES)
>>> plt.xticks(POS, LABELS)
>>> plt.ylabel('Sales')

Developing Stunning Graphs Chapter 7

[266]

Save the graph to the hard drive:4.

>>> plt.savefig('data.png')

How it works...
After importing and preparing the data in steps 1 and 2 in the How to do it… section, the
graph is generated in step 3 by calling .bar. A .ylabel is added and the X axis is labeled
with the proper time description through .xticks.

Step 4 saves the file to the hard drive with the name data.png.

There's more...
The resolution of the image can be determined through the dpi parameter. This will affect
the size of the file. Use resolutions between 72 and 300. Lower ones will be difficult to read,
and higher ones won't make sense unless the size of the graph is humongous:

>>> plt.savefig('data.png', dpi=72)

matplotlib understands how to store the most common file formats, such as JPEG, PDF,
and PNG. It will be used automatically when the filename has the proper extension.

Unless you have a specific requirement, use PNG. It is very efficient at
storing graphs with limited colors when compared with other formats. If
you need to find all the supported files, you can
call plt.gcf().canvas.get_supported_filetypes().

The full matplotlib documentation can be found here: https:/ /matplotlib. org/. In
particular, the guide for legends is here: https:/ /matplotlib. org/ users/ legend_ guide.
html#plotting-guide- legend. For annotations, it is here: https:/ / matplotlib. org/ users/
annotations.html.

See also
The Plotting a simple sales graph recipe
The Adding legends and annotations recipe

8
Dealing with Communication

Channels
In this chapter, we will cover the following recipes:

Working with email templates
Sending an individual email
Reading an email
Adding subscribers to an email newsletter
Sending notifications via email
Producing SMS
Receiving SMS
Creating a Telegram bot

Introduction
Dealing with communication channels is where automating things can produce big gains.
In this recipe, we'll see how to work with two of the most common communication
channels—emails, including newsletters, as well as sending and receiving text messages by
phone.

During the years, there has been a fair amount of abuse in methods of delivery, like spam
or unsolicited marketing messages, making necessary to partner with external tools to
avoid messages to be automatically rejected by automated filters. We will present the
proper caveats where applicable. All the tools presented have excellent documentation, so
do not be afraid to read it. They also have a lot of features, and they may be able to do
something that is exactly what you're looking for.

Dealing with Communication Channels Chapter 8

[268]

Working with email templates
To send an email, we first need to generate its content. In this recipe, we'll see how to
generate a proper template, in both text-only style and HTML.

Getting ready
We should start by installing the mistune module, which will compile Markdown
documents into HTML. We will also use the jinja2 module to combine HTML with our
text:

$ echo "mistune==0.8.3" >> requirements.txt
$ echo "jinja2==2.20" >> requirements.txt
$ pip install -r requirements.txt

In the GitHub repo, there are a couple of templates we will use—email_template.md

in https://github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter08/email_ template. md and a template for styling, email_styling.html,
in https://github. com/ PacktPublishing/ Python- Automation- Cookbook/ blob/ master/
Chapter08/email_ styling. html.

How to do it...
Import the modules:1.

>>> import mistune
>>> import jinja2

Read both templates from disk:2.

>>> with open('email_template.md') as md_file:
... markdown = md_file.read()

>>> with open('email_styling.html') as styling_file:
... styling = styling_file.read()

Dealing with Communication Channels Chapter 8

[269]

Define the data to include in the template. The template is quite simple and3.
accepts only a single parameter:

>>> data = {'name': 'Seamus'}

Render the Markdown template. This produces the text-only version of the data:4.

>>> text = markdown.format(**data)

Render the Markdown and add the styling:5.

>>> html_content = mistune.markdown(text)
>>> html = jinja2.Template(styling).render(content=html_content)

Save the text and the HTML version to disk to check them:6.

>>> with open('text_version.txt', 'w') as fp:
... fp.write(text)
>>> with open('html_version.html', 'w') as fp:
... fp.write(html)

Check the text version:7.

$ cat text_version.txt
Hi Seamus:

This is an email talking about **things**

Very important info

1. One thing
2. Other thing
3. Some extra detail

Best regards,

 The email team

Dealing with Communication Channels Chapter 8

[270]

Check the HTML version in a browser:8.

How it works...
Step 1 gets the modules that will be used later, and step 2 reads the two templates that will
be rendered. email_template.md is the basis of the content, and it's a Markdown
template. email_styling.html is an HTML template that contains the basic HTML
surrounding and CSS styling information.

The basic structure is to create the content in Markdown format. This is a
plain-text file that's readable and can be send as part of the email. That
content can then be converted into HTML and surrounded with some
styling to create an HTML function. email_styling.html has a content
area to put the rendered HTML from Markdown.

Step 3 defines the data that will render in email_template.md. It is a very simple
template that only requires a parameter called name.

In step 4, the Markdown template gets rendered with the data. This produces the plain-
text version of the email.

Dealing with Communication Channels Chapter 8

[271]

The HTML version is rendered in step 5. The plain-text version is rendered to HTML
using mistune, and then it is wrapped in email_styling.html using a jinja2 template.
The final version is a self-contained HTML document.

Finally, we save both versions, plain-text (as text) and HTML (as html), to a file in step 6.
Steps 7 and 8 check the stored values. The information is the same, but in the HTML version,
it is styled.

There's more...
Using Markdown makes dual emails with text and HTML easy to generate. Markdown is
quite readable in text format, and renders very naturally into HTML. That said, it is
possible to generate a totally different HTML version, which will allow for more
customization and taking advantage of HTML's features.

The full Markdown syntax can be found at https:/ /daringfireball. net/ projects/
markdown/syntax and a good cheat sheet with the most commonly used elements is
at https://beegit. com/ markdown- cheat- sheet.

While making a plain-text-only version of an email is not strictly
necessary, it is a good practice and shows you care about who reads the
email. Most email clients accept HTML, but it's not totally universal.

For an HTML email, note that the whole style should be contained in the email. That means
that the CSS needs to be embedded into the HTML. Avoid making external calls that could
lead the email to not render properly in some email clients, or even be qualified as spam.

The styling in email_styling.html is based on the modest style that can be found
here: http://markdowncss. github. io/ . There are more CSS styles that can be used, and a
search in Google should find more. Remember to remove any external references, as
discussed before.

Images can be included in HTML by encoding the image in base64 format so it can be
embedded directly in the HTML img tag, instead of adding a reference:

>>> import base64
>>> with open("image.png",'rb') as file:
... encoded_data = base64.b64encode(file)
>>> print "".format(data=encoded_data)

Dealing with Communication Channels Chapter 8

[272]

You can find more information about this technique in this article: https:/ /css- tricks.
com/data-uris/.

The mistune full docs are available at http:/ /mistune. readthedocs. io/ en/latest/ and
the jinja2 documentation at http:/ / jinja.pocoo. org/docs/ 2. 10/.

See also
The Formatting text in Markdown recipe in Chapter 5, Generating Fantastic Reports
The Using templates for reports recipe in Chapter 5, Generating Fantastic Reports
The Sending transactional emails recipe in Chapter 5, Generating Fantastic Reports

Sending an individual email
The most basic way of sending an email is to send an individual one from an email account.
This option is only recommended for very sporadic use, but for simple purposes such as
sending a couple of emails a day to controlled addresses, it can be good enough.

Do not use this method to send emails in bulk to distribution lists or to
customers with unknown email addresses. You risk being banned from
your service provider due to anti-spam rules. See other recipes in this
chapter for more options.

Getting ready
For this recipe, we'll need an email account with a service provider. There are small
differences based on the provider to use, but we'll use a Gmail account, as it is very
common and free to access.

Due to Gmail's security, we'll need to create a specific app password that can be used to
send an email. Follow the instructions here: https:/ /support. google. com/ accounts/
answer/185833. This will help to generate a password for the purpose of this recipe.
Remember to create it for mail access. You can delete the password afterwards to remove it.

We'll use the smtplib module, which is part of Python's standard library.

Dealing with Communication Channels Chapter 8

[273]

How to do it...
Import the smtplib and email modules:1.

>>> import smtplib
>>> from email.mime.multipart import MIMEMultipart
>>> from email.mime.text import MIMEText

Set up the credentials, replacing these with your own ones. For testing purposes,2.
we'll send to the same email, but feel free to use a different address:

>>> USER = 'your.account@gmail.com'
>>> PASSWORD = 'YourPassword'
>>> sent_from = USER
>>> send_to = [USER]

Define the data to be sent. Notice the two alternatives, a plain-text one and an3.
HTML one:

>>> text = "Hi!\nThis is the text version linking to
https://www.packtpub.com/\nCheers!"
>>> html = """<html><head></head><body>
... <p>Hi!

... This is the HTML version linking to Packt

... </p>
... </body></html>
"""

Compose the message as a MIME multipart, including subject, to, and from:4.

>>> msg = MIMEMultipart('alternative')
>>> msg['Subject'] = 'An interesting email'
>>> msg['From'] = sent_from
>>> msg['To'] = ', '.join(send_to)

Fill the data content parts of the email:5.

>>> part_plain = MIMEText(text, 'plain')
>>> part_html = MIMEText(html, 'html')
>>> msg.attach(part_plain)
>>> msg.attach(part_html)

Dealing with Communication Channels Chapter 8

[274]

Send the email, using the SMTP SSL protocol:6.

>>> with smtplib.SMTP_SSL('smtp.gmail.com', 465) as server:
... server.login(USER, PASSWORD)
... server.sendmail(sent_from, send_to, msg.as_string())

The email is sent. Check your email account for the message. Checking the7.
original email, you can see the full raw email, with elements in both HTML and
plain-text. The email is presented redacted:

Dealing with Communication Channels Chapter 8

[275]

How it works...
After step 1, making the pertinent imports from stmplib and email, step 2 defines the
credentials obtained from Gmail.

Step 3 shows the HTML and text that is going to be sent. They are alternatives, so they
should present the same information, but in different formats.

The basic message information is set up in step 4. It specifies the subject of the email, as
well as the from and to. Step 5 adds multiple parts, each with the proper MIMEText type.

The last part added is the preferred alternative, according to the MIME
format, so we add the HTML part last.

Step 6 sets up the connection with the server, logs in using the credentials, and sends the
message. It uses a with context to get the connection.

If there's an error with the credentials, it will raise an exception with username and
password not accepted.

There's more...
Note that sent_to is a list of addresses. You can send an email to more than one address.
The only caveat is in step 4, where it needs to be specified as a list of comma-separated
value for all addresses.

Although it is possible to label sent_from as a different address than that
used to send the email, it is not recommended. That can be interpreted as
an indication of trying to fake the origin of the email, and provoke
detection as a spam source.

The server used here, smtp.gmail.com, is the one specified by Gmail, and the defined port
for SMTPS (secure SMTP) is 465. Gmail also accepts port 587, which is the standard, but
requires you to specify the kind of session by calling .starttls, as shown in the next
code:

 with smtplib.SMTP('smtp.gmail.com', 587) as server:
 server.starttls()
 server.login(USER, PASSWORD)
 server.sendmail(sent_from, send_to, msg.as_string())

Dealing with Communication Channels Chapter 8

[276]

If you are interested in more details about these differences and both protocols, you can
find more information in this article: https:/ /www. fastmail. com/help/ technical/
ssltlsstarttls.html.

The full smtplib documentation can be found at https:/ /docs. python. org/ 3/ library/
smtplib.html, and the email module, with info on the different formats for emails,
including examples on MIME types, can be found here: https:/ / docs. python. org/ 3/
library/email.html.

See also
The Working with email templates recipe
The Sending an individual email recipe

Reading an email
In this recipe, we'll see how to read emails from an account. We'll use the IMAP4 standard,
which is the most commonly used standard for reading email.

Once read, the email can be processed and analyzed automatically to generate actions such
as smart automated responses, forwarding the email to a different target, aggregating the
results for monitoring, and so on. The options are unlimited!

Getting ready
For this recipe, we'll need an email account with a service provider. There are small
differences based on the provider to use, but we'll use a Gmail account, as it is very
common and free to access.

Due to Gmail's security, we'll need to create a specific app password to use to send an
email. Follow the instructions here: https:/ /support. google. com/ accounts/ answer/
185833. This will generate a password for the purpose of this recipe. Remember to create it
for mail. You can delete the password afterwards to remove it.

We'll use the imaplib module, which is part of Python's standard library.

The recipe will read the last received email, so you can use it for better control over what's
going to be read. We'll send a short email that looks like it was sent to support.

Dealing with Communication Channels Chapter 8

[277]

How to do it...
Import the imaplib and email modules:1.

>>> import imaplib
>>> import email
>>> from email.parser import BytesParser, Parser
>>> from email.policy import default

Set up the credentials, replacing these with your own ones:2.

>>> USER = 'your.account@gmail.com'
>>> PASSWORD = 'YourPassword'

Connect to the email server:3.

>>> mail = imaplib.IMAP4_SSL('imap.gmail.com')
>>> mail.login(USER, PASSWORD)

Select the inbox folder:4.

>>> mail.select('inbox')

Read all email UIDs and retrieve the latest received email:5.

>>> result, data = mail.uid('search', None, 'ALL')
>>> latest_email_uid = data[0].split()[-1]
>>> result, data = mail.uid('fetch', latest_email_uid, '(RFC822)')
>>> raw_email = data[0][1]

Parse the email into a Python object:6.

>>> email_message = BytesParser(policy=default).parsebytes(raw_email)

Display the subject and sender of the email:7.

>>> email_message['subject']
'[Ref ABCDEF] Subject: Product A'
>>> email.utils.parseaddr(email_message['From'])
('Sender name', 'sender@gmail.com')

Retrieve the payload of the text:8.

>>> email_type = email_message.get_content_maintype()
>>> if email_type == 'multipart':
... for part in email_message.get_payload():
... if part.get_content_type() == 'text/plain':
... payload = part.get_payload()

Dealing with Communication Channels Chapter 8

[278]

... elif email_type == 'text':

... payload = email_message.get_payload()
>>> print(payload)
Hi:

 I'm having difficulties getting into my account. What was the URL,
again?

 Thanks!
 A confuser customer

How it works...
After importing the modules that will be used and defining the credentials, we connect to
the server in step 3.

Step 4 connects to the inbox. This is a default folder in Gmail that contains the received
email.

Of course, you may need to read a different folder. You can get a list of all
folders by calling mail.list().

In step 5, first a list of UIDs is retrieved for all the emails in the inbox by calling
.uid('search', None, "ALL"). The last email received is then retrieved again from the
server through a fetch action with .uid('fetch', latest_email_uid,
'(RFC822)'). This retrieves the email in RFC822 format, which is the standard. Note that
retrieving the email marks it as read.

The .uid command allows us to call IMAP4 commands, returning a tuple
with the result (OK or NO) and the data. If there's an error, it will raise the
proper exception.

The BytesParser module is used to transform from the raw RFC822 email into a Python
object. This is done in Step 6.

The metadata, including details such as the subject, the sender, and the timestamp, can be
accessed like a dictionary, as shown in step 7. The addresses can be parsed from raw text
format to separate the part with email.utils.parseaddr.

Dealing with Communication Channels Chapter 8

[279]

Finally, the content can be unfolded and extracted. If the type of the email is multipart, each
of the parts can be extracted by iterating through .get_payload(). The one that's easier to
deal with is plain/text, so assuming it is present, the code in step 8 will extract it.

The email body is stored in the payload variable.

There's more...
In step 5, we are retrieving all the emails in the inbox, but that's not necessary. The search
can be filtered, for example by retrieving only the last day's emails:

import datetime
since = (datetime.date.today() -
datetime.timedelta(days=1)).strftime("%d-%b-%Y")
result, data = mail.uid('search', None, f'(SENTSINCE {since})')

This will search according to the date of the email. Notice the resolution is in days.

There are more actions that can be done through IMAP4. Check RFC 3501 https:/ /tools.
ietf.org/html/rfc3501 and RFC 6851 https:/ /tools. ietf. org/ html/ rfc6851 for further
details.

The RFCs describe the IMAP4 protocol and can be a little arid. Checking
the possible actions will give you an idea of the possibilities to investigate
in detail, probably by Googling for examples.

The subject and body of the email, as well as other metadata such as date, to, from, and so
on, can be parsed and processed. For example, the subject retrieved in this recipe can be
processed in the following way:

>>> import re
>>> re.search(r'\[Ref (\w+)] Subject: (\w+)', '[Ref ABCDEF] Subject:
Product A').groups()
('ABCDEF', 'Product')

See Chapter 1, Let Us Begin Our Automation Journey for more info about regular expressions
and other ways of parsing information.

Dealing with Communication Channels Chapter 8

[280]

See also
The Introducing regular expressions recipe in Chapter 1, Let Us Begin Our
Automation Journey

Adding subscribers to an email newsletter
A common marketing tool is email newsletters. They are convenient ways of sending
information to multiple targets. A good newsletter system is difficult to implement, and the
recommended way is to use ones available in the market. A well known one is MailChimp
(https://mailchimp. com/).

MailChimp has a lot of possibilities, but the interesting one in regard to this book is its API,
which can be scripted to automate tools. This RESTful API can be accessed through Python.
In this recipe, we will see how to add more subscribers to an existing list.

Getting ready
As we will use MailChimp, we need to have an account available. You can create a free
account at https:/ / login. mailchimp. com/ signup/ .

After creating the account, be sure to at least have a list that we will add subscribers to. As
part of the registration, it is possible that it has been created. It will appear under Lists:

Dealing with Communication Channels Chapter 8

[281]

The list will contain the subscribed users.

For the API, we'll need an API key. Go to Account | Extras | API keys and create a new
one:

We will use the requests module for accessing the API. Add it to your virtual environment:

$ echo "requests==2.18.3" >> requirements.txt
$ pip install -r requirements.txt

The MailChimp API uses the concept of the DC (data center) that your account uses. This
can be obtained from the last digits of your API, or from the start of the URL from the
MailChimp admin site. For example, in all the previous screenshots, it is us19.

Dealing with Communication Channels Chapter 8

[282]

How to do it...
Import the requests module:1.

>>> import requests

Define the authentication and base URLs. The base URL requires your dc at the2.
start (such as us19):

>>> API = 'your secret key'
>>> BASE = 'https://<dc>.api.mailchimp.com/3.0'
>>> auth = ('user', API)

Obtain all your lists:3.

>>> url = f'{BASE}/lists'
>>> response = requests.get(url, auth=auth)
>>> result = response.json()

Filter your lists to obtain the href for the required list:4.

>>> LIST_NAME = 'Your list name'
>>> this_list = [l for l in result['lists'] if l['name'] ==
LIST_NAME][0]
>>> list_url = [l['href'] for l in this_list['_links'] if l['rel'] ==
'self'][0]

With the list URL, you can obtain the URL for the members of the list:5.

>>> response = requests.get(list_url, auth=auth)
>>> result = response.json()
>>> result['stats']
{'member_count': 1, 'unsubscribe_count': 0, 'cleaned_count': 0, ...}
>>> members_url = [l['href'] for l in result['_links'] if l['rel'] ==
'members'][0]

The list of members can be retrieved through a GET request to members_url:6.

>>> response = requests.get(members_url, json=new_member, auth=auth)
>>> result = response.json()
>>> len(result['members'])
1

Append a new member to the list:7.

>>> new_member = {
 'email_address': 'test@test.com',

Dealing with Communication Channels Chapter 8

[283]

 'status': 'subscribed',
}
>>> response = requests.post(members_url, json=new_member, auth=auth)

Retrieving the list of users with a GET obtains both users:8.

>>> response = requests.post(members_url, json=new_member, auth=auth)
>>> result = response.json()
>>> len(result['members'])
2

How it works...
After importing the requests module in step 1, we define the basic values to connect in step
2, the base URL, and the credentials. Note that for the authentication, we only require the
API key as the password, and any user (as described by the MailChimp
documentation: https:/ /developer. mailchimp. com/ documentation/ mailchimp/ guides/
get-started-with- mailchimp- api- 3/).

Step 3 retrieves all the lists, calling the proper URL. The result is returned in JSON format.
The call includes the auth parameter with the defined credentials. All subsequent calls will
be made with that auth parameter for authentication purposes.

Step 4 shows how to filter the returned list to grab the URL of the particular list of interest.
Each of the returned calls includes a list of _links with related information, making it
possible to walk through the API.

The URL for the list is called in step 5. This returns information for the list, including the
basic stats. Applying a similar filtering to step 4, we retrieve the URL for the members.

Due to size constraints and to show relevant data, not all of the retrieved
elements are displayed. Feel free to analyze them interactively and find
out about them. The data is well constructed, following the RESTful
principles of discoverability; plus the Python ability of introspection
makes it quite readable and understandable.

Step 6 retrieves the list of members, making a GET request to members_url, which can be
seen as a single user. This can be seen in the Getting Ready section, in the web interface.

Step 7 creates a new user and posts on the members_url with the information passed in the
json parameter, so it gets translated into JSON format. The updated data is retrieved in
step 7, showing that there's a new user in the list.

Dealing with Communication Channels Chapter 8

[284]

There's more...
The full MailChimp API is quite powerful and can perform a large number of tasks. Go to
the full MailChimp documentation to discover all the possibilities: https:/ /developer.
mailchimp.com/.

As a brief note, and a little out of scope of this book, please be aware of the
legal implications of adding subscribers to an automated list. Spam is a
serious worry and there are new regulations in place to protect the rights
of customers, such as GPDR. Ensure that you have the permission of users
to email them. The good thing is that MailChimp
automatically implements tools to help with this, such as automatic
unsubscribe buttons.

The general MailChimp documentation is also quite interesting and shows a lot of
possibilities. MailChimp is capable of managing newsletter and general distribution lists,
but it can also be tailored to generate flows, schedule the sending of emails, and
automatically send messages to your audience based on parameters such as their birthday.

See also
The Sending an individual email recipe
The Sending transactional emails recipe

Sending notifications via email
In this recipe, we will cover how to send emails that will be send towards customers. An
email that is sent in response to an action by a user, for example, a confirmation email or an
alert email, is called a transactional email. Due to spam protection and other limitations, it
is better to implement this kind of email with the help of external tools.

In this recipe, we will use Mailgun (https:/ /www. mailgun. com), which is able to send this
kind of email, as well as communicate responses.

Getting ready
We'll need to create an account in Mailgun. Go to https:/ /signup. mailgun. com to create
one. Notice that the credit card information is optional.

Dealing with Communication Channels Chapter 8

[285]

Once registered, go to Domains to see there's a sandbox environment. We can use it to test
the functionality, although it will only send emails to registered test email accounts. The
API credentials will be displayed there:

We need to register the account so we'll receive the email as an authorized recipient. You can
add it here:

Dealing with Communication Channels Chapter 8

[286]

To verify the account, check the email of the authorized recipient and confirm it. The email
address is now ready to receive test emails:

We will use the requests module for making the connection to the Mailgun API. Install it in
the virtual environment:

$ echo "requests==2.18.3" >> requirements.txt
$ pip install -r requirements.txt

Everything is ready to send emails, but notice only to authorized recipients. Being able to
send emails everywhere requires us to set up a domain. Follow the Mailgun
documentation: https:/ /documentation. mailgun. com/ en/latest/ quickstart- sending.
html#verify-your- domain.

How to do it...
Import the requests module:1.

>>> import requests

Prepare the credentials, as well as the to and from emails. Note we're using a2.
mock from:

>>> KEY = 'YOUR-SECRET-KEY'
>>> DOMAIN = 'YOUR-DOMAIN.mailgun.org'
>>> TO = 'YOUR-AUTHORISED-RECEIVER'

Dealing with Communication Channels Chapter 8

[287]

>>> FROM = f'sender@{DOMAIN}'
>>> auth = ('api', KEY)

Prepare the email to be sent. Here, there is the HTML version and an alternative3.
plain-text one:

>>> text = "Hi!\nThis is the text version linking to
https://www.packtpub.com/\nCheers!"
>>> html = '''<html><head></head><body>
... <p>Hi!

... This is the HTML version linking to Packt

... </p>
... </body></html>'''

Set up the data to send to Mailgun:4.

>>> data = {
... 'from': f'Sender <{FROM}>',
... 'to': f'Jaime Buelta <{TO}>',
... 'subject': 'An interesting email!',
... 'text': text,
... 'html': html,
... }

Make the call to the API:5.

>>> response =
requests.post(f"https://api.mailgun.net/v3/{DOMAIN}/messages",
auth=auth, data=data)
>>> response.json()
{'id': '<YOUR-ID.mailgun.org>', 'message': 'Queued. Thank you.'}

Retrieve the events and check the email has been delivered:6.

>>> response_events =
requests.get(f'https://api.mailgun.net/v3/{DOMAIN}/events', auth=auth)
>>> response_events.json()['items'][0]['recipient'] == TO
True
>>> response_events.json()['items'][0]['event']
'delivered'

The email should appear in your inbox. As it was sent through the sandbox7.
environment, be sure to check your spam folder if it doesn't show up directly.

Dealing with Communication Channels Chapter 8

[288]

How it works...
Step 1 imports the requests module to be used later. The credentials and the basic
information in the message are defined in step 2, and should be extracted from the Mailgun
web interface, as shown before.

Step 3 defines the email that will be sent. Step 4 structures the information in the way
Mailgun expects. Notice the html and text fields. By default, it will set HTML as preferred
and the plain-text option as an alternative. The format for the TO and FROM should be in the
Name <address> format. You can use commas to separate multiple recipients in TO.

The call to the API is made in step 5. It is a POST call to the messages endpoint. The data is
transferred in the standard way, and basic authentication is used with the auth parameter.
Notice the definition in step 2. All calls to Mailgun should include this parameter. It returns
a message notifying you that it was successful and the message is queued.

In step 6, a call to retrieve the events through a GET request is made. This will show the
latest actions performed, the last of which will be the recent send. Information about
delivery can also be found.

There's more...
To send emails, you'll need to set up the domain with which to send it, instead of using the
sandbox environment. You can find the instructions here: https:/ /documentation.
mailgun.com/en/latest/ quickstart- sending. html#verify- your- domain. This requires
you to change your DNS records to verify that you are their legitimate owner, and increases
the deliverability of emails.

The emails can include attachments in the following way:

attachments = [("attachment", ("attachment1.jpg",
open("image.jpg","rb").read())),
 ("attachment", ("attachment2.txt",
open("text.txt","rb").read()))]
response =
requests.post(f"https://api.mailgun.net/v3/{DOMAIN}/messages",
 auth=auth, files=attachments, data=data)

The data can include the usual info such as cc or bcc, but you can also delay the delivery
for up to three days with the o:deliverytime parameter:

import datetime
import email.utils

Dealing with Communication Channels Chapter 8

[289]

delivery_time = datetime.datetime.now() + datetime.timedelta(days=1)
data = {
 ...
 'o:deliverytime': email.utils.format_datetime(delivery_time),
}

Mailgun can also be used to receive emails and to trigger processes when they arrive, for
example, forwarding them based on rules. Check the Mailgun documentation to find more.

The full Mailgun documentation can be found here, https:/ /documentation. mailgun. com/
en/latest/quickstart. html. Be sure to check their Best Practices section (https:/ /
documentation.mailgun. com/ en/ latest/ best_practices. html#email- best- practices) to
understand the world of sending emails and how to avoid being labeled as spam.

See also
The Working with email templates recipe
The Sending an individual email recipe

Producing SMS
One of the most widely available communication channels is text messages. Text messages
are very convenient to use to distribute information.

SMS messages can be used for marketing purposes, but also as ways of
alerting or sending notifications, or, very common recently, as a way of
implementing two-factor authentication systems.

We will use Twilio, a service exposing an API to send SMS in an easy way.

Getting ready
We need to create an account for Twilio at https:/ /www. twilio. com/. Go to the page and
register a new account.

You'll need to follow the instructions and set up a phone number to receive messages.
You'll need to input a code sent to this phone or receive a call to verify this line.

Dealing with Communication Channels Chapter 8

[290]

Create a new project and check the dashboard. From there, you'll be able to create a first
phone number, able to receive and send SMS:

Once the number is configured, it will appear in the Active Numbers section in All
Products and Services | Phone Numbers.

On the main dashboard, check ACCOUNT SID and AUTH TOKEN. They'll be used later.
Notice you'll need to display the auth token.

Dealing with Communication Channels Chapter 8

[291]

We'll also need to install the twilio module. Add it to your virtual environment:

$ echo "twilio==6.16.1" >> requirements.txt
$ pip install -r requirements.txt

Notice that the receiver phone number can only be a verified number with a trial account.
You can verify more than one number; follow the documentation at https://support.
twilio.com/hc/en-us/articles/223180048-Adding-a-Verified-Phone-Number-or-
Caller-ID-with-Twilio.

How to do it...
Import the Client from the twilio module:1.

>>> from twilio.rest import Client

Set up the authentication credentials obtained from the dashboard before. Also,2.
set your Twilio phone number; as an example, here we set +353 12 345 6789,
a fake Irish number. It will be local to your country:

>>> ACCOUNT_SID = 'Your account SID'
>>> AUTH_TOKEN = 'Your secret token'
>>> FROM = '+353 12 345 6789'

Start the client to access the API:3.

>>> client = Client(ACCOUNT_SID, AUTH_TOKEN)

Send a message to your authorized phone number. Notice the underscore at the4.
end of from_:

>>> message = client.messages.create(body='This is a test message from
Python!',

from_=FROM,
to='+your authorised number')

Dealing with Communication Channels Chapter 8

[292]

You'll receive an SMS to your phone:5.

How it works...
The use of the Twilio client to send messages is very straightforward.

In step 1, we import the Client, and prepare the credentials and the phone number
configured in step 2.

Step 3 creates the client with the proper authentication, and the message is sent in step 4.

Dealing with Communication Channels Chapter 8

[293]

Note that the to number needs to be one of the authenticated numbers
while in a trial account, or it will produce an error. You can add more
authenticated numbers; check the Twilio documentation.

All the messages that are sent from a trial account will include that detail in the SMS, as you
can see in step 5.

There's more...
In certain regions (US and Canada at the time of writing this), SMS numbers have the
ability to send MMS messages, including images. To attach images to the message, add the
media_url parameter and the URL of the image to send:

client.messages.create(body='An MMS message',
media_url='http://my.image.com/image.png',
from_=FROM,
to='+your authorised number')

The client is based on a RESTful API, and allows you to perform multiple operations, such
as create a new phone number, or obtain an available number first and then purchase it:

available_numbers = client.available_phone_numbers("IE").local.list()
number = available_numbers[0]
new_number =
client.incoming_phone_numbers.create(phone_number=number.phone_number)

Check the documentation for more available actions, but most of the dashboard point-and-
click actions can be performed programmatically.

Twilio is also capable of performing other phone services, such as phone
calls and text-to-speech. Check it out in the full documentation.

The full Twilio documentation is available here: https://www.twilio.com/docs/.

See also
The Receiving SMS recipe
The Creating a Telegram bot recipe

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Let Us Begin Our Automation Journey
	Introduction
	Creating a virtual environment
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing third-party packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating strings with formatted values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Manipulating strings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Extracting data from structured strings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using a third-party tool—parse
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Introducing regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Going deeper into regular expressions
	How to do it...
	How it works...
	There's more...
	See also

	Adding command-line arguments
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 2: Automating Tasks Made Easy
	Introduction
	Preparing a task
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a cron job
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Capturing errors and problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sending email notifications
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Building Your First Web Scraping Application
	Introduction
	Downloading web pages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Parsing HTML
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Crawling the web
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Subscribing to feeds
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing web APIs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Interacting with forms
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Selenium for advanced interaction
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing password-protected pages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Speeding up web scraping
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Searching and Reading Local Files
	Introduction
	Crawling and searching directories
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading text files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with encodings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading CSV files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading log files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading file metadata
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading PDF files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading Word documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scanning documents for a keyword
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Generating Fantastic Reports
	Introduction
	Creating a simple report in plain text
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using templates for reports
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Formatting text in Markdown
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing a basic Word document
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Styling a Word document
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Generating structure in Word documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding pictures to Word documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing a simple PDF document
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Structuring a PDF
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Aggregating PDF reports
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Watermarking and encrypting a PDF
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Fun with Spreadsheets
	Introduction
	Writing a CSV spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Updating the CSV files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading an Excel spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Updating an Excel spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating new sheets on an Excel spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating charts in Excel
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with format in Excel
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a macro in LibreOffice
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Developing Stunning Graphs
	Introduction
	Plotting a simple sales graph
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Drawing stacked bars
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Plotting pie charts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Displaying multiple lines
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Drawing a scatter plot
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Visualizing maps
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding legends and annotations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Combining graphs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Saving charts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Dealing with Communication Channels
	Introduction
	Working with email templates
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sending an individual email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading an email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding subscribers to an email newsletter
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sending notifications via email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Producing SMS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Receiving SMS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Telegram bot
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Why Not Automate Your Marketing Campaign?
	Introduction
	Detecting the opportunities
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating personalized coupon codes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sending a notification to the customer on their preferred channel
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Preparing sales information
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Generating a sales report
	Getting Ready
	How to do it...
	How it works
	There's more...
	See also

	Chapter 10: Debugging Techniques
	Introduction
	Learning Python interpreter basics
	How to do it...
	How it works...
	There's more...
	See also

	Debugging through logging
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Debugging with breakpoints
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Improving your debugging skills
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

