

Coding in Python
A Comprehensive Beginners Guide to Learn

the Realms of Coding in Python

Table of Contents
Introduction

Chapter One: Make a Start
Python 3 Installation
Executable Installer
Run It

Chapter Two: Python Variables and Data Types
Python Variables
Naming Variables
Python Datatypes

Python Strings
Python Numbers

Chapter Three: Python Lists and Tuples
Modifying Lists

Append Method
Del Method
Pop Method
Remove Method
List Organization
The sort() Method
Index Errors
Create A Loop
List Slicing
Copying

Python Tuples
Looping

Chapter Four: Python Conditionals
The if-else Statement
The if-elif-else Chain

If Statements and Lists
Multiple Lists

Chapter Five: Python Dictionaries
Removing Pairs
Looping
The sorted() Method
Nesting
Random Dictionary Methods

Chapter Six: Input and Python Loops
The input() Function
While Loops
The Break Keyword
Loops, Lists, Dictionaries

Chapter Seven: Python Functions
Defining Functions
Arguments and Parameters
Positional Arguments
Keyword Arguments
Default Values
Returning Values
Function and Dictionary
Function and While Loop

Chapter Eight: Object-Oriented Programming
Leopard Class
Explaining the __init__() Method
The Fish Class
The Bike Class

Proper Modification of Values

Chapter Nine: The Inheritance Class
Child Class in Python 2.7
Child Class Attributes
Overriding Methods from Parent Class

Chapter Ten: Importing Classes
Importing Multiple Classes
Importing Module
Importing All Classes

Conclusion

References

© Copyright 2020 by Robert C. Matthews - All rights reserved.
This document is geared towards providing exact and reliable information in regards to the topic and
issue covered. The publication is sold with the idea that the publisher is not required to render
accounting, officially permitted, or otherwise, qualified services. If advice is necessary, legal or
professional, a practiced individual in the profession should be ordered.

- From a Declaration of Principles which was accepted and approved equally by a Committee of the
American Bar Association and a Committee of Publishers and Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic
means or in printed format. Recording of this publication is strictly prohibited and any storage of this
document is not allowed unless with written permission from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of
inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained
within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any
legal responsibility or blame be held against the publisher for any reparation, damages, or monetary
loss due to the information herein, either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely, and is universal as so. The
presentation of the information is without contract or any type of guarantee assurance.

The trademarks that are used are without any consent, and the publication of the trademark is without
permission or backing by the trademark owner. All trademarks and brands within this book are for
clarifying purposes only and are the owned by the owners themselves, not affiliated with this
document.

Introduction

This book contains proven steps and strategies on how to code in Python. In
this book, I have included all the basics of coding in Python, written in a
lucid and easy-to-digest form. The book is divided into different chapters,
each dealing with a specific topic. I started the book by explaining the
process of downloading and installing Python on your operating system. As
Windows is the most popular operating system in the world, I focused on
Python installation on Windows.

After that, I moved on to Python variables and data types. I have explained
them one by one. The most interesting of all the datatypes is the Python
string, and it also is the most widely used in different Python programs that
you will find in this book and that you will create yourself. Therefore, I
emphasized it. Then I moved on to Python lists and tuples. I have tried to
create a story in the book so that you find the content coherent, juicy, and
highly valuable. To fulfill this purpose, I have created a game zone that is
under development. The game revolves around a player who has a mission to
equip an office with the cheapest in terms of price and with the most needed
items so that the player can sell the office to the highest bidder. You can see
the story kicking off with the start of the section on lists and tuples.

I will explain different Python codes regarding the game. As you find
yourself inside the game development, you will learn different list methods
such as the del method, the pop method, and list slicing. The game then
moves on toward Python conditionals and dictionaries and gets more
interesting. The conditionals add logic to the game, and dictionaries offer a
way to store data most efficiently.
One of the most interesting programs you will see invites user input and
integrates it into a while loop. You will also enjoy the chapter on functions
that make the code smart and highly engaging. Functions are interesting
because they can be easily paired up with different data types, and for and
while loops.

Object-oriented programming will introduce to real programming. You will
learn how to create classes, inheritance classes, and model real-life objects
with the help of programming. You can create some very interesting
programs with the help of Python classes.

I have clearly written the codes. Each code is coupled with its results. You
can copy the code and paste it in the editor, do the edits of your choice, and
get the result. This is how you can easily learn to code. I have written all the
codes in Python 3.8 which is why I recommend you to download and install
it. The process is already made a part of this book.

I wrote this book with the goal that a person who has to start Python coding
from scratch can easily learn to code. The book is for those who are just
getting started. I have explained each concept with due depth and
comprehensiveness so that you beginners can understand it and digest it well.
Even if you are just getting started in the world of coding, you can easily
understand the concepts.

I recommend that you keep a notebook and a pen with you when you read
this book so that you can note down the important points and code syntax to
remember them and practice them. You also can bookmark them on a smart
device and jump to the desired pages when you want to read them. Unlike
other dry books of coding, this book will explain each step of the code so that
you can easily reproduce what you have learned. I hope you have fun reading
sessions once you get started. If you have got the fire to learn Python, this
book should finish in five to six reading sessions.

Chapter One: Make a Start

This chapter will walk you through the process of making a start in Python
coding. You will learn how to download and install Python on your operating
system. You will also learn how to start the editor and write a code in Python
text editor.

The first thing you should know about is setting up a Python environment on
your operating system. Python is installed differently on different operating
systems. There are currently two available versions of Python which are
Python 2 and Python 3. Each programming language keeps evolving as
developers add to it new concepts and ideas. Python developers have taken a
step further by making regular developments to the language, making it more
powerful and versatile as well. You can install both versions of your
operating system.

Python 3 Installation
Python is one of the most widely used programming languages that were first
launched in 1991. Since then Python has gained immense popularity. It also
is considered one of the most popular as well as flexible programming
languages. Unlike Linux, Windows operating systems don’t have Python pre-
installed by default. However, you always can install Python on the Windows
operating system is a very easy step.

The prerequisites of installing Python 3 on your Windows system are that
you must have Windows 10 installed on the system and have admin
privileges. Also, you should have a command prompt running on the system.
The next prerequisite is the availability of a remote desktop app. You can use
it if you are planning to install Python on a remote Windows server.

The first step in the installation process is selecting the version you want to
install. In this case, we are aiming at downloading Python 3. You should visit
the official Python website python.org and download Python 3 installer for
Windows. Now run the same on your system. As you are just getting started
on learning the Python language, I recommend that you download and install
Python 2 and Python 3 versions to test old and new projects simultaneously.

Executable Installer

You should download and install Python executable installer on your
Windows operating system. The first step in this regard is to open your
internet browser and move to the Downloads section of python.org. Make
sure that you download and install only the version that has an executable
installer available for Windows. The approximate download size is about 25
MB. If your Windows is a 32-bit operating system, you should select
Windows x86 executable installer. If it is 64-bit, you should select Windows
x86-64 executable installer. However, even if you install the wrong version,
it is easy to uninstall it and reinstall it once again.

Run It

When the executable installer of Python has been downloaded, you need to
run it. Select Install launcher for all users. This will ensure that all users on
your system will be able to use it. Don’t forget to tick Add Python 3.8 to the
PATH box. This links the interpreter to the path of execution and facilitates
programming. Older versions don’t display this option.

In the next step, click on Install Now. When you have installed it, you will
see that you will get Python IDLE and Pip. You also can verify Python on
your system by navigating to the directory in which Python was installed or
by entering the word Python in the search bar. You also can check it through
Command Prompt by the name of the directory.
If you opt to install Python 2, you might not get Pip installed with it. Pip is a
powerful package and is very helpful in building software and machine
learning models. Therefore, you should make sure that the version you have
installed has got Pip installed on it.

You can also confirm if Pip is installed on your operating system or not by
opening the Start menu and typing the word cmb in the search bar. The
command will open the Command Prompt application in which you can write
pip –v. If the pip is installed on your system, you will see a line that starts
with pip 19.0.3. Otherwise, the system will say that it doesn’t recognize pip
as an external or internal command. When you open the Python interpreter or
IDLE, it will have text like the following:

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:57:54) [MSC v.1924 64
bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

On the top is written the version of Python. If you have installed Python 2,
the text will be as follows:

Python 2.7.8 (default, Jun 30 2014, 16:08:48) [MSC v.1500 64 bit (AMD64)]
on win32

Type "copyright", "credits" or "license()" for more information.
>>>

Chapter Two: Python Variables and Data Types
When you run a file with the extension .py on Python, it suggests that you are
running a Python program. The editor runs the program in a Python
interpreter. The Python interpreter spots Python keywords, reads them,
identifies them, and acts accordingly. Take the example of the print keyword.
When the Python interpreter sees this keyword, it can print whatever you put
in the parenthesis. When you write code in the Python editor, you will see
that the Python editor highlights your code in different colors. That is how it
recognizes different types of code. This feature of Python is known as syntax
highlighting and is very useful as you learn to write Python programs.

Python Variables

Python variables are like containers that you can fill in with different types of
data values. Python differs from other programming languages because it
does not have any command for the declaration of a variable. You can create
a variable just by assigning it a specific value. In the following example, I
will create a variable and assign it some value. Please keep in mind that I am
using a Python interpreter for the initial stages. I will move on to the Python
editor in the later chapters.

>>> greetings = "Hello, I am here to learn Python."

>>> print(greetings)

Hello, I am here to learn Python.

>>>
The name of the variable is greetings. The variable holds a full sentence as its
unique value. The print keyword, as I said, is used to display the value of the
variable. The value of a variable can be easily replaced if you pack it up with
another value. See the following example.

>>> greetings = "Hello, I am here to learn Python."

>>> print(greetings)

Hello, I am here to learn Python.

>>>

>>> greetings = "This is the world of Python."

>>> print(greetings)

This is the world of Python.

>>>

Naming Variables
When you are naming a variable, you must adhere to a couple of guidelines
and rules. If you break some of the rules, you will see errors in the code.
Even if missing out on the rules does not trigger errors, breaking the rules
will make the code look vague and abstract. The success of a programmer is
that his code should be easy to understand and read. You must keep the
following rules in mind when you are creating variables.

The names of variables may contain numbers, letters, and
underscores. They may start with an underscore and a letter, but
they cannot start with a number. For example, a variable can be
written as greetings_77 but it cannot be written as 77_greetings.

You must avoid the use of Python keywords while naming a
variable. For example, you cannot name a variable as print
because print is a Python keyword.

If you can keep the names of variables as much descriptive as
possible, it will help you better read and understand the code when
you come back to at a later stage. For example, greetings are
better than simply writing g.

Writing variable names is a continuous practice in Python. You will learn
how to create better variable names as you move further into the world of
coding.

When you are creating variables, it is common to get errors. You should
make sure that you are not misspelling different words. Take a look at the
possible errors and try to learn how to avoid them and fix them.

I will use the same variable greetings to show how you can end up getting an
error message.

>>> greetings = "This is the world of Python."

>>> print(greeting)

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

print(greeting)

NameError: name 'greeting' is not defined
>>>

All I did was writing the wrong spelling in the code. What makes Python
different from other programming languages is that it displays the error
message which tells you the exact line on which you have made the error.
This helps rectify the errors and clean the code.

By writing the wrong spelling, I don’t suggest that Python recognizes the
wrong or right spelling. I am trying to suggest that it reads the name of the
variable and matches it with the command you have entered. In case of a
mismatch, the error message pops up. So, even if you misspell the word
while you allot a name to a variable, Python does not declare it an error.

>>> greetings = "This is the world of Python."

>>> print(gretings)

This is the world of Python.
>>>

I have deliberately misspelled the word greetings but still, Python read it and
ran the code. A lot of programming errors happen just because of wrong
spellings. You may call them typos. They can be easily managed if you read
your code with close attention.

Python Datatypes

There are different types of data that you have to use in programming. Some
are simple texts while others are integers or lists. Python supports a diversity
of datatypes. However, you have to designate the datatype when you create
one so that Python can recognize it easily and process it as per your wishes.
In the following section, I will shed light on several data types that I will be
using in various code snippets in the book.

Datatypes, in a brief look, are as under:

#This is Python list

>>> a = ["tomato, potato, garlic, ginger, pumpkin"]

>>> print(a)

['tomato, potato, garlic, ginger, pumpkin']

>>> #This is python frozenset
>>> a = frozenset({"tomato, potato, garlic, ginger, pumpkin"})

>>> print(a)

frozenset({'tomato, potato, garlic, ginger, pumpkin'})

>>> #This is python set

>>> a = {"tomato, potato, garlic, ginger, pumpkin"}

>>> print(a)
{'tomato, potato, garlic, ginger, pumpkin'}

>>> #This is python tuple

>>> a = ("tomato, potato, garlic, ginger, pumpkin")

>>> print(a)

tomato, potato, garlic, ginger, pumpkin

>>> #This is a dictionary

>>> a = {"fruit" : "tomato", "veg: potato", "veg" : "garlic", "veg" : "ginger",
"veg" : "pumpkin"}
SyntaxError: invalid syntax

>>> a = {"fruit" : "tomato", "veg": "potato", "veg" : "garlic", "veg" :
"ginger", "veg" : "pumpkin"}

>>> print(a)

{'fruit': 'tomato', 'veg': 'pumpkin'}

>>> a = {"fruit" : "tomato", "veg: potato", "veg1" : "garlic", "veg2" :
"ginger", "veg3" : "pumpkin"}

SyntaxError: invalid syntax
>>> a = {"fruit" : "tomato", "veg": "potato", "veg1" : "garlic", "veg2" :

"ginger", "veg3" : "pumpkin"}

>>> print(a)

{'fruit': 'tomato', 'veg': 'potato', 'veg1': 'garlic', 'veg2': 'ginger', 'veg3':
'pumpkin'}

In the above I have turned a string into different datatypes. In the dictionary
section of the code, you will see some errors. One error is because of a
missing quote marks while the other error is because of similar dictionary
names. Dictionaries are important as they allow users to store their important
data in the form of pairs. They are used in a number of ways.
Python Strings

The first data type is Python strings. Most of the Python programs have to
collect and process the data, store it, and use it. One of the most common
datatypes is known as strings. They appear to be simple at first glance,
however they can be used in several ways. A string is popularly written in the
form of characters. Anything that comes inside the quotation marks is dubbed
as a string. You can use single or double quotes to create a string. The
flexibility of using different types of quote marks is not without reason. It
serves several purposes. See that in the following code snippet.

While single quotes allow you to write the code easily, double quotes allow
you to use apostrophes in the text. In the following example, you will learn to
use both types of quotes and their dos and don’ts.

>>> a = "I am learning Python."

>>> print(a)

I am learning Python.
>>> a = 'I am learning Python.'

>>> print(a)

I am learning Python.

>>> a = "I am learning Tack's book on Python."

>>> print(a)

I am learning Tack's book on Python.

>>> a = 'I am learning Tacky's book on Python.'

SyntaxError: invalid syntax

>>>

Strings are very interesting if you get a full grasp of the concept. You can
change the text into lower and upper texts. I will use the same string example
and experiment on it to see how we can change its case.
>>> a = "I am learning Python."

>>> print(a.title())

I Am Learning Python.

>>> print(a.upper())

I AM LEARNING PYTHON.

>>> print(a.lower())
i am learning python.

>>>

One of the easiest tasks is changing the case as you have seen. There are
three keywords: upper, lower, and title cases to change any string you have
created for your code. You can see in the code that all the three keywords are
accompanied by () brackets. It is called a method. A method can be defined
as a kind of action that Python performs on a certain piece of data. Even a
character as little as a dot is meaningful in Python coding. The dot that comes
after the string's name directs Python to deploy the method, which can be the
title, lower, upper cases. Each method has parenthesis at the end to fill in
additional information. I have left the parenthesis empty in the above-
mentioned code because I did not have to fill it in with additional
information. However, in the next few chapters, I will explain how you can
use the parenthesis to perform different types of tasks. They are quite
interesting if you can use it in the right way.

Out of all the methods, the lower() method is specifically used to store data in
Python programs. You might have browsed a website that asked you to write
in small letters when you sought to enter some information on the database.
Still, you very possibly might have entered the information in a capital case.
The lower() method helps convert the strings into the lower case, even if a

user like you entered the information in the capital case.

Many Python programs invite data for storage purposes and then use it.
Sometimes you have two or more strings that you have to combine into one.
The process is known as string concatenation. For example, you can combine
the name of the state and the country's name after you receive them
independently. The odds are high that you invite the users' information
separately because usually you have to create two columns on your interface
to facilitate the users. When you receive them separately, you can combine
them with a simple method. See the following example.

>>> state_name = "california"

>>> country_name = "United States"
>>> Location_info = state_name + " " + country_name

>>> print(Location_info)

california United States

>>>

You can see that there is something wrong with the code. The display is
good, but it is not neat. We can add a comma to the code and see how we can
use it. From here, I will shift from Python IDLE to Python text editor to give
you a feel of how you will write a program. Let us see how to switch from
Python IDLE to the text editor.

The first step is to open Python IDLE or interpreter. Go to the File menu and
click New File. A new window will pop up on your computer screen. This is
a Python text editor. You can write the code on it. When you are done writing
the code, you should click on Run on the top menu bar. The editor will ask
you to save the code first and then run it. You need to save the code to your
desired location and Python will run your code. One important point to note
is that when you run the code, a new window of Python IDLE will pop up to
display the result of the code. In the next code samples, you will see the code
that is written in Python editor first, and attached to its tail will be the result
of the code. The second result will start from the word Restart. This is how
you will easily learn it and practice it on your computer system. Let us jump
to the Python editor now.
state_name = "California"

country_name = "United States"

Location_info = state_name + " , " + country_name

print(Location_info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
California, United States

>>>

This code is neat and clean as I have added a comma to it. The most
important thing to learn from this code sample is the plus operator used to
combine the two strings. We can concatenate more than two strings as well. I
will now add the name of the place to the concatenated string.

place_name = "Silicon Valley"

state_name = "California"

country_name = "United States"
location_info = place_name + " , " + state_name + " , " + country_name

print(location_info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Silicon Valley, California , United States

>>>

I will now use the same code to display a message to the user after he has
entered his location information.

place_name = "Silicon Valley"
state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name

print("Hi, I want to visit " + location_info.title() + " in the next month.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Hi, I want to visit Silicon Valley, California, United States in the next month.

>>>

Let change the case of the strings and see how it works in the program.

place_name = "Silicon Valley"

state_name = "California"
country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name

print("Hi, I want to visit " + location_info.upper() + " in the next month.")

print("Hi, I want to visit " + location_info.lower() + " in the next month.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Hi, I want to visit SILICON VALLEY, CALIFORNIA, UNITED STATES in
the next month.
Hi, I want to visit silicon valley, california, united states in the next month.

>>>

You always have the option of creating a concatenated string and storing it in
a variable so that you can use it later on as per your needs.

place_name = "Silicon Valley"

state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name
info = "Hi, I want to visit " + location_info.title() + " in the next month."

print(info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Hi, I want to visit Silicon Valley , California , United States in the next
month.

>>>

Python allows you to neatly format your strings by adding tabs, spaces and
other symbols.

place_name = "Silicon Valley"

state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name
info = "\tHi, I want to visit " + location_info.title() + "\t in the next month."

print(info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Hi, I want to visit Silicon Valley , California , United States in the
next month.

>>>

The tab feature has worked perfectly. Now I will use the \n feature to start
each word of the sentence on a new line.
place_name = "Silicon Valley"

state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name

info = "\nHi, \nI \nwant \nto \nvisit " + location_info.title() + " \nin the \nnext
month."

print(info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
Hi,

I

want

to

visit Silicon Valley, California, United States

in the
next month.

>>>

Python Numbers

Numbers are more often used in programming to do calculations or store
data. For example, if you are developing a Python game, you need to keep the
scores calculated. Python integers are the simplest form of numbers that you
can use. I will do some calculations by using different mathematical
operators.

a = 3 + 6
print(a)

a = 10 - 5

print(a)

a = 3 * 6

print(a)

a = 18 / 6
print(a)

a = 3 ** 6

print(a)

a = 15 ** 6

print(a)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

9
5

18

3.0

729

11390625

>>>

In the next example, I will use multiple operators to see how Python
maintains the order of mathematics.

a = 3 + 6 * 18

print(a)

a = 10 - 5 + 45
print(a)

a = 3 * 6 + 50 / 30

print(a)

a = 18 / 6 * 50

print(a)

a = (3 * 6)- 23
print(a)

a = (15 ** 6) + 100

print(a)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

111

50

19.666666666666668
150.0

-5

11390725

>>>

The next number type is float. This is the decimal form of integer. See how to
use them.

a = 3.0 + 6.344 * 18.234
print(a)

a = 10.1 - 5.56 + 45.22

print(a)

a = 3.45 * 6.3 + 50.09 / 30.1

print(a)

a = 18.22 / 6.1 * 50.89
print(a)

a = (3.21 * 6.23)- 23.22

print(a)

a = (15.123 ** 6.23) + 100.456

print(a)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
118.67649600000001

49.76

23.399119601328902

152.00259016393443

-3.2216999999999985

22343252.55463075

>>>
When you mix up the datatypes without proper procedure, you get an error in
return. For example, you have to mix up date with day to display a string
statement. This will trigger an error if you do not fill in the code with the
right datatype and through the right process.

place_name = "Silicon Valley"

state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name

date = 4
info = "Hi, I want to visit " + location_info.title() + " in the next month on" +

date + " th."

print(info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):
File "C:/Users/saifia computers/Desktop/sample.py", line 6, in <module>

info = "Hi, I want to visit " + location_info.title() + " in the next month
on" + date + " th."

TypeError: can only concatenate str (not "int") to str

>>>

The error is a type error. Python is unable to recognize the information you
have put in. In simple words, the wrong method to fill in the code has
confused Python. So, you have to turn the integer into a string first to display
it in the right way. The technique is simple, but you will have to memorize it.

place_name = "Silicon Valley"
state_name = "California"

country_name = "United States"

location_info = place_name + " , " + state_name + " , " + country_name

date = 4

info = "Hi, I want to visit " + location_info.title() + " on the " + str(date) +
"the of July"

print(info)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
Hi, I want to visit Silicon Valley, California, United States on the 4th of July

>>>

I have told python that I have to add an integer to the string statement.

Chapter Three: Python Lists and Tuples

This chapter will walk you through the concept of Python lists. I will explain
what Python lists are and how you can use them in Python programs. Python
lists are one of the most amazing features of Python programming. They
allow you to fill in loads of information in a succinct manner. They allow you
to pack up tons of information in an easy-to-access format. You can add
millions of items to Python lists. Python lists are considered one of the robust
features of Python programming.

A Python list is packed up with a streak of items that are adjusted in a
specific order. A list can be filled with alphabets and digits. As a list may
contain more than one element, the traditional naming practice for lists
suggests that you give them a plural name. Let us assume that you are
developing a game where a player has to set up an office with necessary
items and sell the office to the highest bidder.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

>>>

The output is alright, except that you do not want your game users to see this
output. It should be in an easy-to-digest form. Rather than printing the
complete list, you can access certain elements in the list by a simple method.
For example, the player in your game wants to see which item has been
included in the office set up. To see that he should be able to access different
items in the list. Here is the method you can include in your program to help
your players confirm the inclusion of different items.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems[0])
print(officeitems[2])

print(officeitems[4])

print(officeitems[5])

print(officeitems[6])

= RESTART: C:/Users/saifia computers/Desktop/sample.py
printer

fan

chair

computer system

table lights

>>>
When you are writing the code for your game, you may run into a serious
problem. Your player may want to access the item no 10 in the list, which
does not exist in the first place as there are only seven items on the list. When
the player tries to do that, the result will be an index error.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems[10])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 2, in <module>

print(officeitems[10])
IndexError: list index out of range

>>>

You can deploy string methods to make the lists look neat and clean. I will
use the title, lower and upper case methods to format the items from the list.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems[0].title())

print(officeitems[1].upper())

print(officeitems[2].lower())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Printer
SCANNER

fan

>>>

One important point to note regarding lists is that the first item in the list
tends to start from zero. If you fill it in with 1, it means you are trying to
access the second item on the list. If you want to access the fifth item on the
list, you will have to use index number 3. There is another way to access
items on the list. You can access the item by using negative indices. In the
following example, I will access items both from positive and negative
indices.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems[0])
print(officeitems[1])

print(officeitems[2])

print(officeitems[-1])

print(officeitems[-2])

print(officeitems[-3])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

printer
scanner

fan

table lights

computer system

chair

>>>

While the positive index starts from the left side, the negative index starts
from the right side. It will pick the values from the end of the list and display
them to the user.

Let us make the game more interesting by adding statements and using items
from the list to build those statements. Each time your player buys something
from the market and adds it to the office, he will receive a message on the
screen that informs him how much he has achieved. I will use individual
values from the list and apply the method of concatenation to create a
message.
officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

comment = "Dear player! You have successfully purchased a " +
officeitems[2].title() + "."

print(comment)

comment = "Dear player! You have successfully purchased a " +
officeitems[0].upper() + "."

print(comment)

comment = "Dear player! You have successfully purchased a " +
officeitems[2].lower() + "."
print(comment)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Dear player! You have successfully purchased a Fan.

Dear player! You have successfully purchased a PRINTER.

Dear player! You have successfully purchased a fan.

>>>

You can use the same items in different ways. All it needs a pinch of
creativity. When the player has installed the items in the office, you can
display a message on the screen to show that the items are operational.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

comment = "Dear player! The " + officeitems[2].title() + " is operational."

print(comment)

comment = "Dear player! The " + officeitems[0].title() + " is operational."
print(comment)

comment = "Dear player! The " + officeitems[6].title() + " are operational."

print(comment)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Dear player! The Fan is operational.

Dear player! The Printer is operational.
Dear player! The Table Lights are operational.

>>>

Modifying Lists

When you have created a list, you can easily change its items, add more items
to it, and remove certain items. In this sense, lists are very flexible. Most of
the lists that you create are dynamic. You can offer your player a choice to
add different items to your list and remove items from the list of office items
to increase or decrease the office's value. The faster he sells or the bigger he
sells matter for the overall gaming score of the player.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

I will change the value of different items at different indices
officeitems[0] = 'water dispenser'

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['water dispenser', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

>>>

Append Method

In the first line, I have displayed the original list. In the next line of code, I
will change the first item's value and redisplay the list. The player has
successfully replaced the item to boost the sale value of the office. You also
can allow your player to keep adding more items to the office to beef up the
value. One of the easiest and the most amazing way to add items to a list is
by using the append method. This method is the simplest of adding new
elements to a list. When you apply the append method, the element you want
to add will be added to the end of the list. The player does not have a choice
to add it to his favorite index.
officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

officeitems.append('water dispenser')

print(officeitems)

officeitems.append('multimedia projector')

print(officeitems)
officeitems.append('air conditioner')

print(officeitems)

officeitems.append('laptop')

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights', 'water
dispenser']
['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights', 'water
dispenser', 'multimedia projector']

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights', 'water
dispenser', 'multimedia projector', 'air conditioner']

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights', 'water
dispenser', 'multimedia projector', 'air conditioner', 'laptop']

>>>

The append method helps you build lists in perfect order. This is the most
efficient way to build lists in a perfectly dynamic way. You can even start
appending elements to an empty list. This is how your player will have more
freedom to start right from scratch. He will see an empty office and equip it
with the items he wants to add to it.
While the append method adds elements to the end of your lists, you can use
the insert method to add items to the position of your choice. The first you
need to do is to specify the index of each new element. See the following
example.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

officeitems.insert(0, 'air conditioner')

print(officeitems)

officeitems.insert(2, 'multimedia projector')
print(officeitems)

officeitems.insert(3, 'water dispenser')

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['air conditioner', 'printer', 'scanner', 'fan', 'table', 'chair', 'computer system',
'table lights']

['air conditioner', 'printer', 'multimedia projector', 'scanner', 'fan', 'table',
'chair', 'computer system', 'table lights']
['air conditioner', 'printer', 'multimedia projector', 'water dispenser', 'scanner',

'fan', 'table', 'chair', 'computer system', 'table lights']

>>>

Del Method

There may be occasions in the game when a player wants to remove certain
items from the office to adjust the office to his desires. You can easily
remove different items from a list by a simple method. The first method is
that of the del statement. Let us check how you can add this method to your
code to make the game more interactive.
officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

del officeitems[0]

print(officeitems)

del officeitems[1]

print(officeitems)
del officeitems[2]

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['scanner', 'table', 'chair', 'computer system', 'table lights']

['scanner', 'table', 'computer system', 'table lights']
>>>

Pop Method

While the del method demands from you that you mention the index number,
you always have the choice to use another method, the pop() method, to
remove items from your lists. This is helpful if you want to give your players
the freedom to randomly remove items from the office setup.

The pop() method tends to eject items from the end of the list. However, you

can use the item later on. This is why the pop() method is different from the
del() method. Imagine that the office items are stacked up one upon another
and you get the opportunity to pick and throw out from the top one by one.
This is how the pop() method works.

I will use the pop() method until the list stands empty to show how a player
can empty an office off the items if he wants to.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)
popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)

popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)
popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)

popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)

popped_officeitems = officeitems.pop()
print(officeitems)

print(popped_officeitems)

popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)

popped_officeitems = officeitems.pop()

print(officeitems)

print(popped_officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']
['printer', 'scanner', 'fan', 'table', 'chair', 'computer system']

table lights

['printer', 'scanner', 'fan', 'table', 'chair']

computer system

['printer', 'scanner', 'fan', 'table']

chair
['printer', 'scanner', 'fan']

table

['printer', 'scanner']

fan

['printer']

scanner

[]
printer

>>>

Once there are no more items in the list but you still use the pop() method, it
will return an error that will look like the following.

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 24, in <module>

popped_officeitems = officeitems.pop()
IndexError: pop from empty list

In the following section, I will show you how you can use the popped item in
the code. If you want your player to explain to his boss why he removed an

item from the item, you can add another line of code to your program.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

popped_officeitems = officeitems.pop()
print("I have sold " + popped_officeitems.title() + " because it was not adding
the desired value to the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

I have sold Table Lights because it was not adding the desired value to the
office.

>>>

Unlike what most people think, the pop() method allows you to remove items
from a list at specific positions of your choice. You have to fill in the
parenthesis with the desired index number.
officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

popped_officeitems = officeitems.pop(3)

print("I have sold the " + popped_officeitems.title() + " because it was not
adding the desired value to the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

I have sold the Table because it was not adding the desired value to the
office.
>>>

Remove Method

Another method to remove items from a list by using the remove method.
Many times you do not know the specific position of a value that you want to

remove. In that case, you can remove the item by using the value of that item.
To do that you have to fill in the parenthesis of the remove() method with the
value.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

officeitems.remove('scanner')
print(officeitems)

officeitems.remove('table')

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

['printer', 'fan', 'table', 'chair', 'computer system', 'table lights']
['printer', 'fan', 'chair', 'computer system', 'table lights']

>>>

Just like you used the popped value later on in the code, you can also use the
removed value from the item.

officeitems = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table
lights']

print(officeitems)

removeditem = 'scanner'

officeitems.remove(removeditem)
print("I have sold the " + removeditem.title() + " because it was not adding
the desired value to the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'chair', 'computer system', 'table lights']

I have sold the Scanner because it was not adding the desired value to the
office.

>>>

List Organization

More often when you create lists, they flow in a kind of unpredictable order.
You cannot always control the order in which the users provide data to the
program. However, you can bring that information into perfect order later on.
It may happen more often than you want to make the information presentable.
This is the reason you should bring it into perfect order. There are several
ways by which you can order lists in Python.

The sort() Method
The sort method of Python makes it fun to sort a list. I will use the same list
of officeitems and experiment on it to see how the list gets organized. The
sort() method sorts lists in an alphabetical order.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems)

officeitems.sort()

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
['printer', 'scanner', 'fan', 'table', 'table lights']

['fan', 'printer', 'scanner', 'table', 'table lights']

>>>

The sort() method has changed the list into a perfect alphabetical order. You
cannot revert to the original order once you have sorted your list. The sort()
can also be used to order the list in the reverse alphabetical order.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems)

officeitems.sort(reverse=True)
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'table lights']

['table lights', 'table', 'scanner', 'printer', 'fan']

>>>

Coupled with the sort() method is the sorted() function. While the sort()
method permanently reorders a list, the sorted() function makes temporary
changes.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']
print(officeitems)

print(sorted(officeitems))

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'table lights']

['fan', 'printer', 'scanner', 'table', 'table lights']
['printer', 'scanner', 'fan', 'table', 'table lights']

>>>

You can see that the sorted() function temporarily changed the order of the
list. When I printed the list without the sorted() function, it comes back into
its original order.

Index Errors

As errors are common in coding, you may run into index errors in lists. One
of the most common types of errors with lists is the index error. You may
confront this type of error more often when you work on lists. However, you
can easily avoid that if you know at which point the index starts. Let us see
first how the error message looks like.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems[5])
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 2, in <module>

print(officeitems[5])

IndexError: list index out of range

>>>

The list contains five items, but when I invoke the index number 5, I get an
error message. Just as for strings, the index for lists also starts at zero.

Index errors come up more often if the list is a long one. The best practice to
work with long lists is to know the exact length of the list. Once you know
the length, you can sort out each item's index number in the list. See the
following method to check the length of the list.
officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

len(officeitems)

Create A Loop

Python lists can be operated with loops. Coming back to the game. If you
want your player to have the option of displaying all the items that he has set
up in his office, you can run a loop through your list. This is helpful if you
have added another character to your game who asks the player about the
total number of items that he has bought for the office. Each item in the list
will be neatly displayed. The for loop in Python will repeat the same action
with each item.

I will use the same list of office items and print each item by looping the list
with a for loop. Let us now create and build a for loop to print out each item
you have bought for the office.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']
for officeitem in officeitems:

print(officeitem)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

printer

scanner

fan

table
table lights

>>>

Python for loop has looped through and printed each item on the list. When
you are writing this code, you may hit an error which can be hard to explain
because there will be no exact error message on the interpreter screen. See the
following example.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table', 'table lights']

['printer', 'scanner', 'fan', 'table', 'table lights']

['printer', 'scanner', 'fan', 'table', 'table lights']

['printer', 'scanner', 'fan', 'table', 'table lights']
['printer', 'scanner', 'fan', 'table', 'table lights']

>>>

All I did was to add an s to officeitem in the last line of code. Python
interpreted it differently and looped through the entire list and displayed it
repetitively. Instead of getting an error message, Python changes the results.

What exactly I did in the code. In the first line of code, I have defined a list,
namely officeitems. In the next line, I have defined a for loop. This line
instructs Python to pick a name from the list and store it in the newly created
variable officeitem. It is not necessary to name a variable in this way, but it is
easy to remember. You can name it as you like. In the next line, I told Python
to print each name that I had stored in the new variable. Python repeats lines
for each item in the list. To kill the confusion about the name of the variable,
I will now change the variable's name.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for things in officeitems:

print(things)
= RESTART: C:/Users/saifia computers/Desktop/sample.py

printer

scanner

fan

table
table lights

>>>

Looping is an important concept in computer programming because it is used
to automate some recitative tasks. If your list is packed up with a million
items, Python loops will repeat the steps a million times and in a very fast
manner.

The Python for loop is amazing because it allows you to experiment with the
office items quickly. You have to set the code right and the entire list will be
fully automated. I will now take each item from the list and display a
message on the Python interpreter screen. If you want your player to tell his
boss he has purchased each item at a discount price and from a quality
production house, you can slightly change the code and display the message
most uniquely.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:
print("I have purchased the " + officeitem.lower() + " at a discount price

from TopQuality Productions.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer at a discount price from TopQuality Productions.

I have purchased the scanner at a discount price from TopQuality
Productions.

I have purchased the fan at a discount price from TopQuality Productions.

I have purchased the table at a discount price from TopQuality Productions.

I have purchased the table lights at a discount price from TopQuality
Productions.
>>>

So, this is getting interesting now. This is how you can develop your game in
a brilliantly interactive manner. If you want the player to speak more than one
line, you can pair up more sentences to the reply. Each line will be executed
in the order you write it in the code. I will now add a second line of code to
the response of the player.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:

print("I have purchased the " + officeitem.lower() + " at a discount price
from TopQuality Productions.")

print ("I hope the " + officeitem.lower() + " will add more value to the
office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer at a discount price from TopQuality Productions.

I hope the printer will add more value to the office.

I have purchased the scanner at a discount price from TopQuality
Productions.

I hope the scanner will add more value to the office.
I have purchased the fan at a discount price from TopQuality Productions.

I hope the fan will add more value to the office.

I have purchased the table at a discount price from TopQuality Productions.

I hope the table will add more value to the office.

I have purchased the table lights at a discount price from TopQuality
Productions.

I hope the table lights will add more value to the office.

>>>
This is how you can add a hundred lines if your program or game requires
that. You also can add a finishing note to the end of a block of code. The
finishing block of code executes without repetition. I will now add a reply
from the boss in the game who has heard what the player said about
purchasing items.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:

print("I have purchased the " + officeitem.lower() + " at a discount price
from TopQuality Productions.")

print ("I hope the " + officeitem.lower() + " will add more value to the
office.")
print("Thanks for making the purchase. Hope you will be able to sell out the
office this month. After all, you won't like to be deprived of your bonus.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer at a discount price from TopQuality Productions.

I hope the printer will add more value to the office.

I have purchased the scanner at a discount price from TopQuality
Productions.

I hope the scanner will add more value to the office.
I have purchased the fan at a discount price from TopQuality Productions.

I hope the fan will add more value to the office.

I have purchased the table at a discount price from TopQuality Productions.

I hope the table will add more value to the office.

I have purchased the table lights at a discount price from TopQuality
Productions.

I hope the table lights will add more value to the office.

Thanks for making the purchase. Hope you will be able to sell out the office
this month. After all, you won't like to be deprived of your bonus.
>>>

All I did was to remove the space before the print statement by which I want
to end the for loop. This explains how crucial a role spaces play in Python
programming. You miss out on an indentation and you will see an error on
the screen.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:

print(officeitem)

Expected an indented block

List Slicing
You can slice a list to work with a portion of a list. This is helpful if you are
building a long list of items and you have to work only with a handful of
items. I will use the same list for slicing.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems[1:4])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['scanner', 'fan', 'table']

>>>
The result contains only the items that I have sliced out of the original list.
The output comes in the form of the original structure of the list. The sliced
part of the list can also be named as a subset of the list. If you omit the
index's start, the subset of the list will start from the first item.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems[:4])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'fan', 'table']

>>>

Similarly, you can omit the second half of the range index.
officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems[2:])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['fan', 'table', 'table lights']

>>>

The negative indexing is also available for Python lists.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print(officeitems[-2:])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['table', 'table lights']
>>>

You also can loop through the subset of a list or the slice of a list just like we
did with a complete list.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

print("Here are the items that have cost double the value of others.")

for officeitem in officeitems[:4]:

print(officeitem.title())
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Here are the items that have cost double the value of others.

Printer

Scanner

Fan

Table

>>>
Copying

You can create a copy of the list based on the original list. This is helpful if
you have packed up customer data in a list and you want to save it elsewhere
to secure it in the wake of data breaches or any other kind of cyberattack. The
most common way of making a copy of the list is to create a slice with no
starting or ending values. This slice instructs Python to slice the list right
from the starting value to the ending value. This is how you end up creating a
copy of your list.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

c_officeitems = officeitems[:]

print("Here is the list of items that I have purchased.")

print(officeitems)

print("\nHere is the exact copy of the same items.")

print(c_officeitems)
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Here is the list of items that I have purchased.

['printer', 'scanner', 'fan', 'table', 'table lights']

Here is the exact copy of the same items.

['printer', 'scanner', 'fan', 'table', 'table lights']

>>>
Let us now check if you really have two lists and that if removing or
modifying one list will affect the copied list or not.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

c_officeitems = officeitems[:]

officeitems.append('computer system')

c_officeitems.append('blinds')

print("Here is the list of items that I have purchased.")

print(officeitems)
print("\nHere is the new list of office items.")

print(c_officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Here is the list of items that I have purchased.

['printer', 'scanner', 'fan', 'table', 'table lights', 'computer system']

Here is the new list of office items.
['printer', 'scanner', 'fan', 'table', 'table lights', 'blinds']

>>>

You can see that the two lists exist independently and that you can modify
them separately. This is helpful if you are building data lists for a big
financial institution.

You may create a copy of the list without using the slice method but you will
not be able to modify the two lists independently of each other. They will not
be able to exist independently of each other.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

c_officeitems = officeitems
officeitems.append('computer system')

c_officeitems.append('blinds')

print("Here is the list of items that I have purchased.")

print(officeitems)

print("\nHere is the new list of office items.")

print(c_officeitems)
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Here is the list of items that I have purchased.

['printer', 'scanner', 'fan', 'table', 'table lights', 'computer system', 'blinds']

Here is the new list of office items.

['printer', 'scanner', 'fan', 'table', 'table lights', 'computer system', 'blinds']

>>>

You can see that each list retained both newly added items. I will now add
one item to one list only and see if the copied list retains that item or not.
officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

c_officeitems = officeitems

officeitems.append('computer system')

print("Here is the list of items that I have purchased.")

print(officeitems)

print("\nHere is the new list of office items.")

print(c_officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Here is the list of items that I have purchased.
['printer', 'scanner', 'fan', 'table', 'table lights', 'computer system']

Here is the new list of office items.

['printer', 'scanner', 'fan', 'table', 'table lights', 'computer system']

>>>

So, as you can see that simply copying a list will not do the magic for you.
Slicing helps you make the copy you desire for.

Python Tuples
While lists can be modified and are flexible, Python tuples are the opposite.
Once you have created a tuple, you cannot change it. A tuple is similar to a
list in the sense that you can fill it up with millions of items but at the same
time, it is different from a list in the sense that you cannot add, remove or
change the items in a tuple. This is helpful if you want to create a list that you
do not want to be changed. The values in a tuple that cannot be changed are
labeled as immutable in Python. So, you can label a rigid list or a tuple as an
immutable list.

In appearance, a tuple looks mostly like a list except that you have to enclose
the tuple items inside square brackets. Once you have created a tuple, you can
easily access the tuples' items by using the index number. I will add a new
feature to the game by creating a list of home items that the same player
needs to sell. The difference is that the player cannot change the items of the
house except in exceptional circumstances. He has to sell the house the way it
is at the moment. He cannot add more items or remove the existing ones to
tune the house's value as per the expectations and demands of buyers.

homeitems = ('dining table', 'cooking range', 'washing machine', 'refrigerator',
'air conditioner')

print(homeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

('dining table', 'cooking range', 'washing machine', 'refrigerator', 'air
conditioner')

>>>

Let us see what happens when we try to change the value of an item in the
tuple.

homeitems = ('dining table', 'cooking range', 'washing machine', 'refrigerator',
'air conditioner')
homeitems[0] = ('bed')

print(homeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 2, in <module>

homeitems[0] = ('bed')
TypeError: 'tuple' object does not support item assignment

>>>

You see an error because Python does not allow you to modify tuples.
However, there is a way out by which you modify a tuple. You can do the
modification by assigning new values to the same variable that carries the
tuple. In the following code snippet, I will redefine the tuple.

homeitems = ('dining table', 'cooking range', 'washing machine', 'refrigerator',
'air conditioner')

print("Original items in the tuple:")

for homeitem in homeitems:

print(homeitem)
homeitems = ('chairs', 'carpets', 'plates', 'oven')

print("Modified items in the tuple:")

for homeitem in homeitems:

print(homeitem)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Original items in the tuple:

dining table

cooking range
washing machine

refrigerator

air conditioner

Modified items in the tuple:

chairs

carpets
plates

oven

>>>

Tuples are data structures that can be used to store values that cannot be
changed through a program.

Looping

Just like lists, you can create a loop through your tuple.

homeitems = ('dining table', 'cooking range', 'washing machine', 'refrigerator',
'air conditioner')
for homeitem in homeitems:

print(homeitem)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

dining table

cooking range

washing machine
refrigerator

air conditioner

>>>

Chapter Four: Python Conditionals

A key part of programming is about examining a set of conditions and then
taking appropriate action based on the conditions. The if statement in Python
lets you test the state of a program and act on it appropriately. This chapter
will walk you through the process of writing conditionals and checking them
as well. The chapter will encompass simple and complex if statements. I will
explain how you can pair up an if statement with lists.

homeitems = ['dining table', 'cooking range', 'washing machine', 'refrigerator',
'air conditioner']

for homeitem in homeitems:
if homeitem == 'dining table':

print(homeitem.upper())

else:

print(homeitem.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

DINING TABLE

Cooking Range
Washing Machine

Refrigerator

Air Conditioner

>>>

The simplest conditional test tends to check if a particular variable's value
stands equal to your value of interest. Sometimes you need to check if a value
exists in a list or not. The player in the game might want to check if a certain
item has been purchased or not before he lists the office for sale.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']
'scanner' in officeitems

You can use the conditional statements to check if a certain item appears in a

list. You also can use the item to display a message or comment.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

item = 'scanner'

item1 = 'table'
item2 = 'extension cable'

if item in officeitems:

print(item.title() + " exists in the office.")

if item1 in officeitems:

print(item1.title() + " exists in the office.")

if item2 not in officeitems:
print(item2.title() + " is not exist in the office. You should buy it as soon

as possible.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Scanner exists in the office.

Table exists in the office.

Extension Cable does not exist in the office. You should buy it as soon as
possible.

>>>

Let us see what more you can do with the conditional statements. You can
add the conditional statement to tell the player when the office will be ready
for listing in the game.
officeitems = 10

if officeitems >= 10:

print("You can list the office for sale")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

You can list the office for sale

>>>

See the following example with an additional print statement.

officeitems = 12

if officeitems >= 10:

print("You can list the office for sale")
print("Have you listed it yet.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

You can list the office for sale

Have you listed it yet?

>>>

The if-else Statement
The condition can be interesting if you add to it the else statement to print a
statement if the count of items has not matured yet. The if-else statement
allows you to test the conditions in both ways. The else statement defines an
action when a particular condition fails.

officeitems = 11

if officeitems >= 10:

print("You can list the office for sale")

print("Have you listed it yet?")

else:

print("Sorry, you cannot list the office for sale.")
print("Please buy and add more items to the office and list it again for

sale.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

You can list the office for sale

Have you listed it yet?

>>>

As the items are more than 10, the condition has been tested passed. Now I
will reduce the count of the items to test the else-statement.

officeitems = 9

if officeitems >= 10:

print("You can list the office for sale")

print("Have you listed it yet?")
else:

print("Sorry, you cannot list the office for sale.")

print("Please buy and add more items to the office and list it again for
sale.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Sorry, you cannot list the office for sale.

Please buy and add more items to the office and list it again for sale.
>>>

The if-elif-else Chain

The elif statement allows you to add one more condition to the block of code.

officeitems = 5

if officeitems < 10:

print("You still can list the office but it will not bring you the desired
amount of money.")

elif officeitems < 15:
print("You can list the office for sale")

print("Have you listed it yet?")

else:

print("Sorry, you cannot list the office for sale.")

print("Please buy and add more items to the office and list it again for
sale.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

You still can list the office, but it will not bring you the desired amount of
money.

>>>

You can test multiple conditions with conditional statements.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']
if 'printer' in officeitems:

print("I have purchased the printer.")

if 'fan' in officeitems:

print("I have purchased the fan.")

if 'scanner' in officeitems:

print("I have purchased the scanner.")
= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer.

I have purchased the fan.

I have purchased the scanner.

>>>

When the player has checked if he has purchased all the desired items, the
game will give him a green signal to list the office. You can add a print
statement at the end of the block of code.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']
if 'printer' in officeitems:

print("I have purchased the printer.")

if 'fan' in officeitems:

print("I have purchased the fan.")

if 'scanner' in officeitems:

print("I have purchased the scanner.")
print("\nYou can list the office now.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer.

I have purchased the fan.

I have purchased the scanner.
You can list the office now.

>>>

The same code cannot work with an elif statement. It will stop working. See
what happens when we remove the simple if statement and add an elif
statement.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

if 'printer' in officeitems:

print("I have purchased the printer.")
elif 'fan' in officeitems:

print("I have purchased the fan.")

elif 'scanner' in officeitems:

print("I have purchased the scanner.")

print("\nYou can list the office now.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer.
You can list the office now.

>>>

If Statements and Lists

You can pair up if statements with lists. You can actually combine the two
and do some amazing things. In the next example, I will pair up a loop with a
list to make the game more interactive.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:

print("I have purchased the " + officeitem + ".")

print("\nBoss: You can list the office for sale now.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased the printer.
I have purchased the scanner.

I have purchased the fan.

I have purchased the table.

I have purchased the table lights.

Boss: You can list the office for sale now.

>>>
You have a straightforward result because the code contains a simple for
loop. However, you can add a bit more complexity to the code. The boss may
ask the employee about a certain item that must be included in the office set
up before the office is put on sale. The employee has to handle the situation
in the most appropriate way. I will add an if-else statement along with the for
loop to make the code more flexible.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

for officeitem in officeitems:

if officeitem == 'cupboard':

print("Sorry Boss, I have not purchased it yet.")

else:

print("However, I have purchased the " + officeitem + ".")
print("\nBoss: You can list the office for sale only after you purchase the
cupboard and set it up in the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

However, I have purchased the printer.

However, I have purchased the scanner.

However, I have purchased the fan.

However, I have purchased the table.

However, I have purchased the table lights.

Boss: You can list the office for sale only after purchasing the cupboard and
setting it up in the office.

>>>
Now, the Python interpreter checks each office item before it displays the
message. The code confirms if the boss has asked for the cupboard. When he
asks for the item, he gets a different response from the employee. The else
block makes sure that the response is in affirmative for all the other items.

Multiple Lists

Up till now, we have worked with a single list. In this code sample, I will
work on multiple lists. I will add a list of optional items that may or may not
be purchased. However, purchasing these items will help increase the value
of the office.

officeitems = ['printer', 'scanner', 'fan', 'table', 'table lights']

optionalitems = ['pen', 'paper', 'drafting pads', 'books', 'water dispenser']

for optionalitem in optionalitems:
if optionalitem in officeitems:

print("The office has been set up will all the essential and optional
items.")

else:

print("Sorry, I have not purchased the " + optionalitem + ".")

print("\nBoss: You can list the office for sale only after you purchase the
optional items and set them up in the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Sorry, I have not purchased the pen.
Sorry, I have not purchased the paper.

Sorry, I have not purchased the drafting pads.

Sorry, I have not purchased the books.

Sorry, I have not purchased the water dispenser.

Boss: You can list the office for sale only after purchasing the optional items
and setting them up in the office.

>>>

I defined the list of office items and optional items. I created a loop through
the optional items to check if they also are added to the office or not. Upon
the checking of each item, a message is displayed. In the end, the boss gives
his verdict on whether to list the office or not. In the code mentioned above,
the office does not contain any item from the list of optional items, therefore
it displayed the same message. You can change that by including one or two
optional items in the list of office items. See the following code.
officeitems = ['printer', 'paper', 'drafting pads', 'scanner', 'fan', 'table', 'table
lights']

optionalitems = ['pen', 'paper', 'drafting pads', 'books', 'water dispenser']

for optionalitem in optionalitems:

if optionalitem in officeitems:

print("I have purchased the " + optionalitem + ".")

else:
print("Sorry, I have not purchased the " + optionalitem + ".")

print("\nBoss: You can list the office for sale only after you purchase all the
optional items and set them up in the office.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Sorry, I have not purchased the pen.

I have purchased the paper.

I have purchased the drafting pads.

Sorry, I have not purchased the books.
Sorry, I have not purchased the water dispenser.

Boss: You can list the office for sale only after purchasing all the optional
items and setting them up in the office.

>>>

Chapter Five: Python Dictionaries

This chapter will walk you through the concept of Python dictionaries, which
are the most important part of Python coding. You can store information in a
dictionary in the form of pairs. You can easily access the information, modify
it, and delete it at will. Dictionaries are amazing in the sense that they allow
you to store unlimited information. Just like lists, I will explain how you can
pair up a dictionary with a loop.

When you have a good grasp of Python dictionaries, you will learn how to
model an object with a dictionary's help. Creating a dictionary is simple, but
updating it and using it in a code can be tricky. I will move through this
chapter step by step. In the first code sample, I will create a simple
dictionary.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner': 'hybrid', 'table':
'wood', 'table lights': 'LED'}

>>>

There is another way to access and display selected information from a
dictionary. You can use one of the pairs' values and use them to access the
other value of the pair. See the following code example.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}

print(officeitems['printer'])
print(officeitems['paper'])

print(officeitems['table lights'])

print(officeitems['table'])

print(officeitems['drafting pads'])

= RESTART: C:/Users/saifia computers/Desktop/sample.py

HP

A4

LED
wood

blank

>>>

Dictionaries are more complex than lists, therefore you need more
programming practice to handle them. You can see that a dictionary contains
key-value pairs where each key is automatically connected to its value. Each
key's value can be a string or an integer or even a list in some cases. It also
can be a dictionary in a more complex code form. You have to wrap up a
dictionary in curly braces or the dictionary will display an error. A key has
directed association with its value.

Accessing values from a dictionary is easy. As you have seen in the above
code sample, I tried to access each value with the help of a key or a
dictionary. Dictionaries are also very dynamic, and they allow you to add as
many key-value pairs to the dictionary as you desire. I will now take an
empty dictionary and fill it up with key-value pairs of my choice.

officeitems = {}
officeitems['printer'] = 'HP'

officeitems['paper'] = 'A4'

officeitems['drafting pads'] = 'blank'

officeitems['scanner'] = 'hybrid'

officeitems['table lights'] = 'LED'

print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
{'printer': 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner': 'hybrid', 'table
lights': 'LED'}

>>>

You also can modify the value of a key as you deem fit. In order to do that,
you have to mention the name of the dictionary and write the key in square
brackets. Then you have to write the new value for the same key.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}

print("I have purchased a printer by " + officeitems['printer'] + ".")
officeitems['printer'] = 'dell'

print("However, I have also purchased one more now by " +
officeitems['printer'] + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I have purchased a printer by HP.

However, I have also purchased one more now by dell.

>>>
Removing Pairs

When you don’t need a certain key-value pair, you can remove it easily. You
can apply the del statement to remove the key-value pair. All you have to do
is to mention the name of your dictionary and key. I will remove different
items from the dictionary I have created earlier on.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}

print(officeitems)

del officeitems['printer']

print(officeitems)

del officeitems['paper']
print(officeitems)

del officeitems['drafting pads']

print(officeitems)

del officeitems['scanner']

print(officeitems)

del officeitems['table']

print(officeitems)

del officeitems['table lights']
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner': 'hybrid', 'table':
'wood', 'table lights': 'LED'}

{'paper': 'A4', 'drafting pads': 'blank', 'scanner': 'hybrid', 'table': 'wood', 'table
lights': 'LED'}

{'drafting pads': 'blank', 'scanner': 'hybrid', 'table': 'wood', 'table lights': 'LED'}

{'scanner': 'hybrid', 'table': 'wood', 'table lights': 'LED'}
{'table': 'wood', 'table lights': 'LED'}

{'table lights': 'LED'}

{}

>>>

You can see that when all the pairs are removed, the result is an empty
dictionary. One important thing to keep in mind is that the del statement
removes a pair completely from the dictionary. Therefore, only use the del
statement when you are sure that you do not need a certain key-value pair.

A dictionary allows you to use the values in a print statement to display
certain messages.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}
print("I bought a printer by " + officeitems['printer'] + ".")

print("I also bought a scanner by " + officeitems['scanner'] + ".")

print("The paper if of the size " + officeitems['paper'] + ".")

print("The drafting pads are " + officeitems['drafting pads'] + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I bought a printer by HP.

I also bought a scanner by hybrid.

The paper if of the size A4.
The drafting pads are blank.

>>>

I have used the print keyword in the code. Then I added the appropriate
statement to the code. After that came the part of the concatenation operator.
This is how you can use the values of a dictionary to display messages in
your code.

Looping

Just like we formed a loop through a list, we can form the same through a
dictionary as well. A Python dictionary may contain a few millions of key-
value pairs. As a dictionary carries big amounts of data, Python allows you to
create a loop through it to easily see each key-value pair and use it in a
program. In the first example, I will loop through each item in your
dictionary.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}
for key, value in officeitems.items():

print("\nThe Key: " + key)

print("The Value: " + value)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

The Key: printer

The Value: HP

The Key: paper
The Value: A4

The Key: drafting pads

The Value: blank

The Key: scanner

The Value: hybrid

The Key: table

The Value: wood
The Key: table lights

The Value: LED

>>>

There is another method to display the values of each key-value pair. See the
following example.

officeitems = {'printer' : 'HP', 'paper': 'A4', 'drafting pads': 'blank', 'scanner':
'hybrid', 'table': 'wood', 'table lights': 'LED'}

for k, v in officeitems.items():
print("\nThe Key: " + k)

print("The Value: " + v)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

The Key: printer

The Value: HP

The Key: paper

The Value: A4
The Key: drafting pads

The Value: blank

The Key: scanner

The Value: hybrid

The Key: table

The Value: wood
The Key: table lights

The Value: LED

>>>

One important thing to consider before moving on is the order in which
Python stores the key-value pairs. When you create and run a loop through a
dictionary, Python does not care about the order in which you had created the
dictionary. It only tracks down the keys and their respective values.

officeitems = {'printer' : 'Produced by HP', 'paper': 'A4 type', 'drafting pads':
'It is blank', 'scanner': 'it is hybrid', 'table': 'made of wood', 'table lights': 'They
are LED'}

for items, features in officeitems.items():
print(items.title() + " carries the following feature: " + features.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py
Printer carries the following feature: Produced By Hp

Paper carries the following feature: A4 Type

Drafting Pads carries the following feature: It Is Blank

Scanner carries the following feature: It Is Hybrid

Table carries the following feature: Made Of Wood

Table Lights carries the following feature: They Are Led
>>>

The code instructs Python to loop through the key-value pairs inside of the
dictionary. As the code loops through each pair, Python first stores each key
inside the variable named items. It stores each value inside the variable
named features. The same variables are then added to the print statement that
runs and displays related messages.

You can opt for looping through all the keys or values separately. For
example, sometimes you need to work just with the keys and only want to
display them. There is a way out. See the following example.

officeitems = {'printer' : 'Produced by HP', 'paper': 'A4 type', 'drafting pads':
'It is blank', 'scanner': 'it is hybrid', 'table': 'made of wood', 'table lights': 'They
are LED'}

for items in officeitems.keys():

print(items.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Printer

Paper

Drafting Pads
Scanner

Table

Table Lights

>>>

Now I will form a loop through each key's values and display the result in the
interpreter.

officeitems = {'printer' : 'Produced by HP', 'paper': 'A4 type', 'drafting pads':
'It is blank', 'scanner': 'it is hybrid', 'table': 'made of wood', 'table lights': 'They
are LED'}
for items in officeitems.values():

print(items.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Produced By Hp

A4 Type

It Is Blank

It Is Hybrid
Made Of Wood

They Are Led

>>>

The sorted() Method

To make your loops more interesting, you can add to them the sorted()
method. A dictionary is not in order, therefore you need to bring it up in the
order you want it to be. You can use the sorted() method to make that happen.

officeitems = {'printer' : 'Produced by HP', 'paper': 'A4 type', 'drafting pads':
'It is blank', 'scanner': 'it is hybrid', 'table': 'made of wood', 'table lights': 'They
are LED'}

for items in sorted(officeitems.keys()):

print(items.title() + " has been purchased at a discount price. I hope it will
help earn a handsome amount from the sale of the office")
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Drafting Pads has been purchased at a discount price. I hope it will help earn
a handsome amount from the sale of the office

Paper has been purchased at a discount price. I hope it will help earn a
handsome amount from the sale of the office

Printer has been purchased at a discount price. I hope it will help earn a
handsome amount from the sale of the office

Scanner has been purchased at a discount price. I hope it will help earn a
handsome amount from the sale of the office

Table has been purchased at a discount price. I hope it will help earn a
handsome amount from the sale of the office
Table Lights have been purchased at a discount price. I hope it will help earn
a handsome amount from the sale of the office

>>>

You can see that the result is in perfect alphabetical order.

Nesting

Ever wondered if you can make a dictionary more complex than it already is.
You can nest a long dictionary inside another dictionary. The process is
dubbed as nesting. You also can nest more than one dictionaries in a list. You
can diversify the process of nesting by several methods.

I am going to pack up multiple dictionaries inside a list. Coming to the back,
I will create three different dictionaries about different items of an office and

then cram them all inside a list.

officeitem1 = {'printer' : 'Produced by HP', 'scanner': 'it is hybrid', 'laptop':
'dell'}

officeitem2 = {'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker'}

officeitem3 = {'table': 'made of wood', 'table lights': 'They are LED', 'office
chair': 'boss'}
officeitems = [officeitem1, officeitem2, officeitem3]

for officeitem in officeitems:

print(officeitem)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell'}

{'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker'}

{'table': 'made of wood', 'table lights': 'They are LED', 'office chair': 'boss'}

>>>
The three dictionaries denote each section of the office items. One deals with
IT set up, the second denotes stationary while the third section denotes office
furniture.

Random Dictionary Methods

Dictionaries are flexible in the sense that they allow you to do several things.
For example, you can check if a certain key exists in the dictionary or not. I
will use the if statement in the code.

officeitem1 = {'printer' : 'Produced by HP', 'scanner': 'it is hybrid', 'laptop':
'dell', 'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table':
'made of wood', 'table lights': 'They are LED', 'office chair': 'boss'}

if "scanner" in officeitem1:

print("Yes, I have got 'scanner' in the office.")

else:
print("Sorry, I do not have that item.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Yes, I have got 'scanner' in the office.

>>>

There is another method known as the clear() method that will empty your
dictionary. See the following code sample.
officeitem1 = {'printer' : 'Produced by HP', 'scanner': 'it is hybrid', 'laptop':
'dell', 'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table':
'made of wood', 'table lights': 'They are LED', 'office chair': 'boss'}

print(officeitem1)

officeitem1.clear()

print(officeitem1)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4
type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table': 'made of wood', 'table
lights': 'They are LED', 'office chair': 'boss'}
{}

>>>

You can see that the clear method has emptied the dictionary. Python allows
you to create perfect copies of your dictionary. You can create as many
copies as you want to. The method is dubbed as the copy() method. It is a
built-in Python method.

officeitem1 = {'printer' : 'Produced by HP', 'scanner': 'it is hybrid', 'laptop':
'dell', 'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table':
'made of wood', 'table lights': 'They are LED', 'office chair': 'boss'}

print(officeitem1)

officeitem2 = officeitem1.copy()

print(officeitem2)
= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4

type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table': 'made of wood', 'table
lights': 'They are LED', 'office chair': 'boss'}

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4
type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table': 'made of wood', 'table
lights': 'They are LED', 'office chair': 'boss'}

>>>

There is another built-in method to create copy of the dictionary. The method
is labeled as the dict() method.
officeitem1 = {'printer' : 'Produced by HP', 'scanner': 'it is hybrid', 'laptop':
'dell', 'paper': 'A4 type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table':
'made of wood', 'table lights': 'They are LED', 'office chair': 'boss'}

print(officeitem1)

officeitem2 = dict(officeitem1)

print(officeitem2)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4
type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table': 'made of wood', 'table
lights': 'They are LED', 'office chair': 'boss'}
{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4
type', 'drafting pads': 'It is blank', 'pen': 'parker', 'table': 'made of wood', 'table
lights': 'They are LED', 'office chair': 'boss'}

>>>

We had the exact copy of the same dictionary. There is a bit of difference in
writing the code.

If you have to create a dictionary from scratch, you can use the dict()
constructor to do that. I will take an empty dictionary and fill it in with the
keys and values by using the dict() constructor.

officeitem1 = dict(printer = 'Produced by HP', scanner = 'it is hybrid', laptop
= 'dell', paper = 'A4 type', draftingpads = 'blank', pen = 'parker', table = 'made
of wood')

print(officeitem1)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'printer': 'Produced by HP', 'scanner': 'it is hybrid', 'laptop': 'dell', 'paper': 'A4
type', 'draftingpads': 'blank', 'pen': 'parker', 'table': 'made of wood'}

>>>

The keys should not contain any spaces while you are constructing a
dictionary by the dict() constructor. Please take a look at how I wrote drafting
pads. If you leave any spaces between the keys, Python interpreter will return
syntax error.

Chapter Six: Input and Python Loops

Programs are written to solve different problems. Some programs are made to
collect information from users. These programs demand special functions
that could collect the information and process it to the system's database.
When you put your office on sale, you can introduce a special function that
invites the buyers' quotations. The user input program will take the input,
analyze it, and respond to the user.

In this chapter, I’ll explain how you can build a program that accepts user
input and processes it. I will use the input() function to develop the program.
The user input and while loop will be explained together as it is the while
loop that keeps the program running. The while loop runs the program as
long as a particular condition stands true.

The input() Function
It is an interesting function and very helpful in program building. The
function pauses your program and allows the user to fill in the program with
the requisite information. Once the function receives the information, it
forwards it to a variable for storage purposes.

pgm = input("This program repeats whatever you write: ")

print(pgm)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

This program repeats whatever you write: I am learning Python and I am
enjoying it well.

I am learning Python and I am enjoying it well.

>>>
= RESTART: C:/Users/saifia computers/Desktop/sample.py

This program repeats whatever you write: Do you know Python can be used
to educate robots.

Do you know Python can be used to educate robots.

>>>

I entered some statements which the program repeats as they are. The
important point is that you have to rerun the program once it has repeated one
statement. When you run the program, it pauses and waits for the user to
write something. Once the program senses input, it waits for the user to press
Enter. After that, it displays the results. I will create a program that asks users
to enter the bidding price to buy the office that has already been set up by the
player in your game.

pgm = input("Please enter the bidding price at which you want to buy the
office: ")

print("I want to buy the office at " + pgm + " million dollars.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py
Please enter the bidding price at which you want to buy the office: five

I want to buy the office for five million dollars.

>>>

The program is suitable only if the user enters the value in the form of string.
Therefore you will have to leave a note, instructing the user to write only in
words. However, there is a way out to solve this problem. You can allow
users to enter the price in numbers without causing an error.

pgm = input("Please enter the bidding price at which you want to buy the
office: ")

print("I want to buy the office at " + str(pgm) + " million dollars.")
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Please enter the bidding price at which you want to buy the office: 5

I want to buy the office for 5 million dollars.

>>>

In the next sample, I will create a program that has more than lines.

pgm = input("If you are interested in buying the office, please proceed to fill
in the price box. ")

pgm += "\nPlease enter the bidding price at which you want to buy the office.
"

username = input(pgm)

print("I want to buy the office for " + username + " million dollars.")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

If you are interested in buying the office, please proceed to fill in the price
box.
Please enter the bidding price at which you want to buy the office. 3

I want to buy the office for 3 million dollars.

>>>

This is how you can easily build a multiline string in the user input function.

While Loops

This section will shed light on how you can create and use Python while
loops. You have already encountered the for loop which runs through a list of
items and applies the code to each item in the list. The while loop is a bit
different. It runs through a set of items as long as a certain condition stands
true. While loop is interesting in the sense that you can use it to execute
different interesting mathematical functions. The simplest and the most
interesting thing is counting the numbers.
my_number = 1

while my_number <= 15:

print(my_number)

my_number += 1

= RESTART: C:/Users/saifia computers/Desktop/sample.py

1

2
3

4

5

6

7

8

9

10
11

12

13

14

15

>>>
See another mathematical example of the use of a while loop.

my_number = 1

while my_number <= 100:

print(my_number)

my_number += 5

= RESTART: C:/Users/saifia computers/Desktop/sample.py

1
6

11

16

21

26

31
36

41

46

51

56

61

66
71

76

81

86

91

96
>>>

I set the value to numbers 1 and 5, respectively. The while loop reads it and
keeps running until it reaches 15 and 100, respectively. The code guides the
loop to calculate the numbers and display the result on the interpreter. The
loops get repeated as long as its condition remains true. Your player needs a
while loop to exit the game. Only a while loop helps you end a game and
shutdown it properly. Otherwise, it will hang the system each time you try to
shut it down.

This demands that you let the users quit the game when they want to. I will
not pack up the program in a while loop and then define the quit value for the
same so that users can exit it by entering the quit value.

pgm = input("This program repeats whatever you tell it: ")

pgm += "\nYou have to enter 'q' to exit the program. "

msg = ""

while msg != 'q':
msg = input(pgm)

print(msg)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

This program repeats whatever you tell it: I am determined to learn Python in
six months.

I am determined to learn Python in six months.

You have to enter 'q' to exit the program. I am determined to build my
programs in the first month of learning.

I am determined to build my programs in the first month of learning.
I am determined to learn Python in six months.

You have to enter 'q' to exit the program. q

q

>>>

I defined the prompt namely pgm in the first line of code. It gives the user
two options; one to enter a message and another to quit the program. I also
set a variable that stored the information the user enters. The while loop runs
until the user enters q and breaks the loop. It can run a million times on end if
the user does not end it.

pgm = input("This program repeats whatever you tell it: ")
pgm += "\nYou have to enter 'q' to exit the program. "

msg = ""

while msg != 'q':

msg = input(pgm)

print(msg)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

This program repeats whatever you tell it: hi

hi

You have to enter 'q' to exit the program. how are you
how are you

hi

You have to enter 'q' to exit the program. What is your name?

What is your name?

hi

You have to enter 'q' to exit the program. Are you fine?
Are you fine?

hi

You have to enter 'q' to exit the program. I am looking forward to doing
business with you.

I am looking forward to doing business with you.

hi

You have to enter 'q' to exit the program. q
q

>>>

You can see that the while loop ran until I entered the keyword q that broke
the loop. The program is perfect except for the fact that it displays q as an
actual message. If I add an if clause to the code, it will work just fine.

pgm = input("This program repeats whatever you tell it: ")

pgm += "\nYou have to enter 'q' to exit the program. "

msg = ""

while msg != 'q':
msg = input(pgm)

if msg != 'q':

print(msg)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

This program repeats whatever you tell it: Hi

Hi

You have to enter 'q' to exit the program. My name is Jack.

My name is Jack.

Hi

You have to enter 'q' to exit the program. I am here to do business with you.
I am here to do business with you.

Hi

You have to enter 'q' to exit the program. I want to sell an office to the
highest bidder. Have a look at the pictures.

I want to sell an office to the highest bidder. Have a look at the pictures.

Hi

You have to enter 'q' to exit the program. I think you are not interested.
Thank you!
I think you are not interested. Thank you!

Hi

You have to enter 'q' to exit the program. q

>>>

The program did not display the word q as a message. It simply lets the user
exit the program.

The Break Keyword

If you want to exit the loop without running the code that remains, you can
add a break statement to the program. The break statement tends to redirect
the flow of a program and allow you to execute the code of your choice.
pgm = input("Please enter the name of the office item that you have
purchased:")

pgm += "\n(You have to enter 'q' to exit the program.) "

while True:

item = input(pgm)

if item == 'q':

break

else:

print("I have purchased the " + item.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py
Please enter the name of the office item that you have purchased:table

table

(You have to enter 'q' to exit the program.)

I have purchased the

table

(You have to enter 'q' to exit the program.) laptop
I have purchased the Laptop

table

(You have to enter 'q' to exit the program.) computer system

I have purchased the Computer System

table

(You have to enter 'q' to exit the program.) stack of paper.

I have purchased the Stack Of Paper.
table

(You have to enter 'q' to exit the program.) air conditioner

I have purchased the Air Conditioner

table

(You have to enter 'q' to exit the program.) q

>>>
You have another choice as well. Instead of breaking out of the loop, you can
integrate into the block of code a continue statement that will take the code
back to the start after the condition stands tested. See the following
mathematical example.

num = 0

while num < 40:

num += 1

if num %4 == 0:
continue

print(num)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

1

2

3
5

6

7

9

10

11

13
14

15

17

18

19

21
22

23

25

26

27

29

30
31

33

34

35

37

38
39

>>>

You can see that the continue statement returned the code after a pause at the
point Python tested the condition. The num started at 0. I kept the figure
under 40 so the loop ran until 4, checked if the current number is divisible by
4 and then executed the rest of the code because the number was not divisible
by 4. Let us try another example to clear the concept fully.

num = 4

while num < 80:

num += 3

if num %4 == 0:
continue

print(num)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

7

10

13

19

22

25

31
34

37

43

46

49

55
58

61

67

70

73

79

82
>>>

Loops, Lists, Dictionaries

The three go side by side. I have already given some code snippets that
showed what a while loop could be used for. I will give a comprehensive
overview of how you can pair up loops, lists, and dictionaries. The examples
will be a bit more complex than the previous examples.

items_tobuy = ['printer', 'scanner', 'laptop', 'paper', 'drafting pads', 'pen', 'table',
'table lights', 'office chair']

items_bought = []

while items_tobuy:

officeitems = items_tobuy.pop()

print("I am purchasing the " + officeitems.title())

items_bought.append(officeitems)

print("\nI have purchased the following items:")
for item_bought in items_bought:

print(item_bought.title())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I am purchasing the Office Chair

I have purchased the following items:

Office Chair
I am purchasing the Table Lights

I have purchased the following items:

Office Chair

Table Lights

I am purchasing the Table

I have purchased the following items:

Office Chair
Table Lights

Table

I am purchasing the Pen

I have purchased the following items:

Office Chair

Table Lights
Table

Pen

I am purchasing the Drafting Pads

I have purchased the following items:

Office Chair

Table Lights

Table
Pen

Drafting Pads

I am purchasing the Paper

I have purchased the following items:

Office Chair

Table Lights
Table

Pen

Drafting Pads

Paper

I am purchasing the Laptop

I have purchased the following items:

Office Chair
Table Lights

Table

Pen

Drafting Pads

Paper

Laptop
I am purchasing the Scanner

I have purchased the following items:

Office Chair

Table Lights

Table

Pen

Drafting Pads
Paper

Laptop

Scanner

I am purchasing the Printer

I have purchased the following items:

Office Chair
Table Lights

Table

Pen

Drafting Pads

Paper

Laptop

Scanner
Printer

>>>

When a player purchases an item, he will get a clear message that an item has
been bought and added to the office. So, this has definitely made the game
more interesting.

While loop can also help you in removing multiple instances of a particular
value. If an item's value is being repeated in the list, you can set up a while
loop to remove all instances of the same. For a small list, manually removing
it is not a problem. However, this feature of the while loops becomes a must
when you are dealing with long lists.

officeitems = ['printer', 'scanner', 'laptop', 'paper', 'drafting pads', 'scanner',

'pen', 'table', 'scanner', 'table lights', 'office chair']

print(officeitems)

while 'scanner' in officeitems:

officeitems.remove('scanner')
print(officeitems)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

['printer', 'scanner', 'laptop', 'paper', 'drafting pads', 'scanner', 'pen', 'table',
'scanner', 'table lights', 'office chair']

['printer', 'laptop', 'paper', 'drafting pads', 'pen', 'table', 'table lights', 'office
chair']

>>>

In the next example, I will build a dictionary with the user input with a while
loop. I will create a program that will ask the user to tell about the office
items he wants to buy and the brand name. The input will be forwarded to a
dictionary and used to create the desired output for the user. The program
will display purchase statistics in a neat and summarized way.
officeitems = {}

buying = True

while buying:

buyer_item = input("\nWhat do want to buy? ")

officeitem = input("Of what brand do you want to buy? ")

officeitems[buyer_item] = officeitem

repeat = input("Would you like to buy another item for the office? (yes/
no ")

if repeat == 'no':

buying = False

print("\nPurchase Statistics")

for buyer_item, officeitem in officeitems.items():

print("I have purchased " + buyer_item + " from the brand " + officeitem
+ ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

What do you want to buy? table

Of what brand do you want to buy? interwood
Would you like to buy another item for the office? (yes/ noyes

What do you want to buy?

= RESTART: C:/Users/saifia computers/Desktop/sample.py

What do you want to buy? table

Of what brand do you want to buy? interwood

Would you like to buy another item for the office? (yes/ no yes
What do you want to buy? air conditioner

Of what brand do you want to buy? orient

Would you like to buy another item for the office? (yes/ no yes

What do you want to buy? laptop

Of what brand do you want to buy? dell

Would you like to buy another item for the office? (yes/ no yes

What do you want to buy? office chair
Of what brand do you want to buy? boss

Would you like to buy another item for the office? (yes/ no no

Purchase Statistics

I have purchased a table from the brand interwood.

I have purchased an air conditioner from the brand orient.

I have purchased a laptop from the brand dell.
I have purchased an office chair from the brand boss.

>>>

The same program can be redesigned to collect names and email IDs of users
who visit your eCommerce website. You can then use the information to send
your prospects direct mail ads and boost your business. All you need is a bit
of tweaking to the existing code and your program will be ready to boost
your marketing campaign.

users_id = {}

info = True

while info:
user_name = input("\nWhat is your name? ")

user_id = input("what is your email id? ")

users_id[user_name] = user_id

repeat = input("Would you like to add another username or id? (yes/ no ")

if repeat == 'no':

info = False
print("\nUser Info")

for user_name, user_id in users_id.items():

print("My name is " + user_name + " and my email ID is " + user_id +
".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

What is your name? johnson

what is your email id? johnson@gmail.com

Would you like to add another username or id? (yes/ no yes
What is your name? emily

what is your email id? emily@yahoo.com

Would you like to add another username or id? (yes/ no yes

What is your name? emilia

what is your email id? emilia@outlook.com

Would you like to add another username or id? (yes/ no yes

What is your name? mark

what is your email id? mark@rocketmail.com

Would you like to add another username or id? (yes/ no yes

What is your name? jasmine
what is your email id? jasmine@gmail.com

Would you like to add another username or id? (yes/ no

User Info

My name is johnson and my email ID is johnson@gmail.com.

My name is emily and my email ID is emily@yahoo.com.

My name is emilia and my email ID is emilia@outlook.com.
My name is mark and my email ID is mark@rocketmail.com.

My name is jasmine and my email ID is jasmine@gmail.com.

>>>

You can see how easy it is to build a program with a while loop and user
input function to collect crucial prospect data that can ultimately help you
shape your marketing campaign. You can give this program a brilliant
interface and run it as part of your landing page design. As I have defined an
empty dictionary at the start, you can fill it with as much information as you
want to. It can carry over a million items.

Chapter Seven: Python Functions

This chapter will walk you through the process of writing functions.
Functions can be defined as blocks of code that have just one job to perform.
When you want to do a simple task that you have defined in your function,
you can just call the function you have written to do the job. If you are
looking forward to performing the same task more than once throughout the
program, you can just make a call to the same function and Python will
execute the entire block of code. Functions make your programs simple and
easy to write and run.

In this chapter, I will explain how you can create functions, pass crucial
information to the same, and repeat multiple times the task that functions
perform. I will also explain how you can store a function in the form of
modules.

Defining Functions
Defining a function is a simple job. The keyword I will use is called def. The
keyword will be followed by the name of the function and parenthesis.
Parenthesis is a function that is very important as it can be used for different
purposes, like adding default information and passing information to
functions at a later stage of writing a program.

def user_info():

print("My name is Joe and I am a new user.")

user_info()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.

>>>
In the first line of code, I have defined the function. The second line carries
the usual print statement while the last line is where I made a function call to
display the function's information. This can be dubbed as the simplest
structure of a function. The def keyword defines the function.

From this point, I will make it a bit complex by passing information to the
function. I will have to modify it a little bit to suit our needs. The parenthesis

now will no longer be empty. I will fill them up with some information.

def user_info(username):

print("My name is " + username.title() + " and I am a new user.")

user_info('Joe')
user_info('Jimmy')

user_info('Emily')

user_info('Emilia')

user_info('Mark')

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.
My name is Jimmy and I am a new user.

My name is Emily and I am a new user.

My name is Emilia and I am a new user.

My name is Mark and I am a new user.

>>>

The most important point to note here is that functions help you cut short the
block of code. You do not have to rewrite a block of code again and again to
do the same job. All you need is to call the function and use the parenthesis to
use new information for the same block of code. Programmers love functions
because they save their time and energy when they write lengthy programs.

Arguments and Parameters
I have packed up the variable inside the parenthesis and named it as the
username; this is labeled as a parameter. The values Joe and Emily that I have
put in the parenthesis function are known as arguments. Arguments and
parentheses are often confused with each other. People use them
interchangeably. That is not the right thing to do.

There can be multiple arguments for a function; you can pass them to the
function in many ways and put them in a position. They are called positional
arguments and they are also known as keyword arguments. Each argument

may include the name of a variable, a list, or a dictionary.

Positional Arguments

When you make a function call, Python ought to watch the arguments with a
specific parameter in the definition of a function. The matching of values are
dubbed as positional arguments.

def user_info(username, email_id):
print("My name is " + username.title() + " and I am a new user.")

print("My email ID is " + email_id.title() + ".")

user_info('Joe', 'joe@gmail.com')

user_info('Jimmy', 'jimmy@outlook.com')

user_info('Emily', 'emily@gmail.com')

user_info('Emilia', 'emilia@yahoo.com')
user_info('Mark', 'mark@outlook.com')

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.

My email ID is Joe@Gmail.Com.

My name is Jimmy and I am a new user.

My email ID is Jimmy@Outlook.Com.

My name is Emily and I am a new user.
My email ID is Emily@Gmail.Com.

My name is Emilia and I am a new user.

My email ID is Emilia@Yahoo.Com.

My name is Mark and I am a new user.

My email ID is Mark@Outlook.Com.

>>>
The output neatly displays the name of the user and his or her email ID. In
the above code sample, I have called the function more than once. Multiple

function calls are the most efficient way to do a job. As soon as a new user
fills in the information and you make a function call, the entire block of code
will run and execute the information. There is virtually no limit to the number
of function calls. One important thing to keep in mind while making a
function call is to remember the position of arguments. If you change the
position, you are likely to get funny results.

def user_info(username, email_id):

print("My name is " + username.title() + " and I am a new user.")

print("My email ID is " + email_id.title() + ".")
user_info('joe@gmail.com', 'Joe')

user_info('jimmy@outlook.com', 'Jimmy')

user_info('emily@gmail.com', 'Emily')

user_info('Emilia', 'emilia@yahoo.com')

user_info('Mark', 'mark@outlook.com')

>>>= RESTART: C:/Users/saifia computers/Desktop/sample.py
My name is Joe@Gmail.Com and I am a new user.

My email ID is Joe.

My name is Jimmy@Outlook.Com and I am a new user.

My email ID is Jimmy.

My name is Emily@Gmail.Com and I am a new user.

My email ID is Emily.

My name is Emilia and I am a new user.
My email ID is Emilia@Yahoo.Com.

My name is Mark and I am a new user.

My email ID is Mark@Outlook.Com.

>>>

I have changed the position for the first three function calls and the results are
ridiculous.

Keyword Arguments

There is another way out. You can use keyword arguments to avoid this kind
of mix up. A keyword argument is like a name-value pair that is passed to a
function. A keyword argument allows you to create a link between the name
and the value inside an argument. When you pass the argument to the
function, Python cannot mistake it. It eliminates the confusion and you do not
have to worry about bringing your arguments in order.

def user_info(username, email_id):

print("My name is " + username.title() + " and I am a new user.")
print("My email ID is " + email_id.title() + ".")

user_info(email_id = 'joe@gmail.com', username = 'Joe')

user_info(email_id = 'jimmy@outlook.com', username = 'Jimmy')

user_info(email_id = 'emily@gmail.com', username = 'Emily')

user_info(username = 'Emilia', email_id = 'emilia@yahoo.com')

user_info(username = 'Mark', email_id = 'mark@outlook.com')
= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.

My email ID is Joe@Gmail.Com.

My name is Jimmy and I am a new user.

My email ID is Jimmy@Outlook.Com.

My name is Emily and I am a new user.

My email ID is Emily@Gmail.Com.
My name is Emilia and I am a new user.

My email ID is Emilia@Yahoo.Com.

My name is Mark and I am a new user.

My email ID is Mark@Outlook.Com.

>>>

I have changed the positions of the arguments and it hardly affected the

results. Keyword arguments help you create a functional program.

Default Values

When you are writing a program, you may come up with information that
you have to use repeatedly. This means that you will have to fill in the
function call with the required arguments each you need that information to
be executed. This may result in a waste of time and energy, and may also
cause frustration. If you create default values for the function, you will be
able to execute the excessively used information fast and efficiently. When
you leave the function call empty, it will use the default arguments. You can
use the default information as many times as you want to. The default values
tend to simply a program and declutter the code. I will fill in the same
example with the default arguments and also use the default values multiple
times.

def user_info(username = 'Dora', email_id = 'dora@outlook.com'):
print("My name is " + username.title() + " and I am a new user.")

print("My email ID is " + email_id.title() + ".")

user_info(email_id = 'joe@gmail.com', username = 'Joe')

user_info()

user_info(email_id = 'jimmy@outlook.com', username = 'Jimmy')

user_info()
user_info(email_id = 'emily@gmail.com', username = 'Emily')

user_info(username = 'Emilia', email_id = 'emilia@yahoo.com')

user_info(username = 'Mark', email_id = 'mark@outlook.com')

user_info()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.

My email ID is Joe@Gmail.Com.
My name is Dora and I am a new user.

My email ID is Dora@Outlook.Com.

My name is Jimmy and I am a new user.

My email ID is Jimmy@Outlook.Com.

My name is Dora and I am a new user.

My email ID is Dora@Outlook.Com.
My name is Emily and I am a new user.

My email ID is Emily@Gmail.Com.

My name is Emilia and I am a new user.

My email ID is Emilia@Yahoo.Com.

My name is Mark and I am a new user.

My email ID is Mark@Outlook.Com.
My name is Dora and I am a new user.

My email ID is Dora@Outlook.Com.

>>>

You can use the keyword arguments, the positional arguments and the default
values at the same time.

def user_info(username = 'Dora', email_id = 'dora@outlook.com'):

print("My name is " + username.title() + " and I am a new user.")

print("My email ID is " + email_id.title() + ".")
user_info(email_id = 'joe@gmail.com', username = 'Joe')

user_info()

user_info(username = 'Jimmy')

user_info()

user_info(email_id = 'emily@gmail.com', username = 'Emily')

user_info('Emilia', email_id = 'emilia@yahoo.com')
user_info('Mark', 'mark@outlook.com')

user_info()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My name is Joe and I am a new user.

My email ID is Joe@Gmail.Com.

My name is Dora and I am a new user.
My email ID is Dora@Outlook.Com.

My name is Jimmy and I am a new user.

My email ID is Dora@Outlook.Com.

My name is Dora and I am a new user.

My email ID is Dora@Outlook.Com.

My name is Emily and I am a new user.
My email ID is Emily@Gmail.Com.

My name is Emilia and I am a new user.

My email ID is Emilia@Yahoo.Com.

My name is Mark and I am a new user.

My email ID is Mark@Outlook.Com.

My name is Dora and I am a new user.

My email ID is Dora@Outlook.Com.
>>>

The most important thing to note in the code mentioned above is that in one
function call when I missed out on writing the email ID, the program picked
it up from the default values and ran it. If you leave one argument in the
function call but have a default argument in place, you will have it covered
by the default values.

You may run an error if you fail to fill in the function call with the
arguments.

def user_info(username, email_id):

print("My name is " + username.title() + " and I am a new user.")

print("My email ID is " + email_id.title() + ".")

user_info()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 6, in <module>
user_info()

TypeError: user_info() missing 2 required positional arguments: 'username'
and 'email_id'

>>>

Returning Values

A function does not have to display the output in a direct form. You can
make the function process a bunch of data and return the value in an indirect
form. The return statement picks up a value from the function and forwards it
to the line that made a function call.

def user_info(username, email_id):
info = "My name is " + username.title() + " and I am a new user, and my

email ID is " + email_id.title() + "."

return info.title()

newuser = user_info('Dora', 'dora@gmail.com')

print(newuser)

newuser1 = user_info('John', 'john@gmail.com')

print(newuser1)

newuser2 = user_info('Jimmy', 'jimmy@gmail.com')
print(newuser2)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My Name Is Dora And I Am A New User, And My Email Id Is
Dora@Gmail.Com.

My Name Is John And I Am A New User, And My Email Id Is
John@Gmail.Com.

My Name Is Jimmy And I Am A New User, And My Email Id Is
Jimmy@Gmail.Com.

>>>

In the next code sample, I will add another argument to the code. I will also
experiment on making an argument optional so that the users who do not
want to fill in a value, can leave it without running an error in the program.

def user_info(username, email_id, gender):
info = "My name is " + username.title() + " and I am a new user, and my

email ID is " + email_id.title() + ". My gender is " + gender.title() + "."

return info.title()

newuser = user_info('Dora', 'dora@gmail.com', 'female')

print(newuser)

newuser1 = user_info('John', 'john@gmail.com', 'male')

print(newuser1)
newuser2 = user_info('Jimmy', 'jimmy@gmail.com', 'male')

print(newuser2)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

My Name Is Dora And I Am A New User, And My Email Id Is
Dora@Gmail.Com. My Gender Is Female.

My Name Is John And I Am A New User, And My Email Id Is
John@Gmail.Com. My Gender Is Male.

My Name Is Jimmy And I Am A New User, And My Email Id Is
Jimmy@Gmail.Com. My Gender Is Male.

>>>
Suppose someone wants to leave the email option aside. You can add a
conditional statement to the existing code to allow users to make a choice at
will.

def user_info(username, gender, email_id=''):

if email_id:

info = "My name is " + username.title() + " and I am a new user, and
my email ID is " + email_id.title() + ". My gender is " + gender.title() + "."

else:

info = "My name is " + username.title() + " and my gender is " +
gender.title() + "."

return info.title()
newuser = user_info('Dora', 'female')

print(newuser)

newuser1 = user_info('John', 'john@gmail.com', 'male')

print(newuser1)

newuser2 = user_info('Jimmy', 'jimmy@gmail.com', 'male')

print(newuser2)
= RESTART: C:/Users/saifia computers/Desktop/sample.py

My Name Is Dora And My Gender Is Female.

My Name Is John And I Am A New User, And My Email Id Is Male. My
Gender Is John@Gmail.Com.

My Name Is Jimmy And I Am A New User, And My Email Id Is Male. My
Gender Is Jimmy@Gmail.Com.

>>>

Function and Dictionary

You can pair up a dictionary with a function. Take the example of the
following function.
def user_info(username, gender, email_id):

user = {'uname': username, 'gender': gender, 'email address': email_id}

return user

newuser = user_info('Johnson', 'johnson@gmail.com', 'male')

print(newuser)

newuser1 = user_info('John', 'john@gmail.com', 'male')

print(newuser1)

newuser2 = user_info('Jimmy', 'jimmy@gmail.com', 'male')

print(newuser2)

newuser3 = user_info('Dora', 'dora@gmail.com', 'female')
print(newuser3)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

{'uname': 'Johnson', 'gender': 'johnson@gmail.com', 'email address': 'male'}

{'uname': 'John', 'gender': 'john@gmail.com', 'email address': 'male'}

{'uname': 'Jimmy', 'gender': 'jimmy@gmail.com', 'email address': 'male'}

{'uname': 'Dora', 'gender': 'dora@gmail.com', 'email address': 'female'}
>>>

The function user_info takes the requisite information about the name, gender
and email address of a user, and fill them up into a dictionary. Each value is
stored in the designated key. The function receives information in raw form
and turns it into textual information in a meaningful data structure. Up till
now, I have stored and processed the information in the form of strings. You
may confront situations where you have to store data in numerical form as
well. There is an easy way out.

def user_info(username, gender, email_id, age=''):

user = {'uname': username, 'gender': gender, 'email address': email_id}

if age:

user['age'] = age

return user
newuser = user_info('Johnson', 'johnson@gmail.com', 'male', age=55)

print(newuser)

newuser1 = user_info('John', 'john@gmail.com', 'male', age=33)

print(newuser1)

newuser2 = user_info('Jimmy', 'jimmy@gmail.com', 'male', age= 54)

print(newuser2)

newuser3 = user_info('Dora', 'dora@gmail.com', 'female', age= 24)

print(newuser3)

= RESTART: C:/Users/saifia computers/Desktop/sample.py
{'uname': 'Johnson', 'gender': 'johnson@gmail.com', 'email address': 'male',
'age': 55}

{'uname': 'John', 'gender': 'john@gmail.com', 'email address': 'male', 'age': 33}

{'uname': 'Jimmy', 'gender': 'jimmy@gmail.com', 'email address': 'male', 'age':
54}

{'uname': 'Dora', 'gender': 'dora@gmail.com', 'email address': 'female', 'age':
24}

>>>

I have added a new parameter to the function's definition and have also
assigned this parameter a kind of empty default value.
Function and While Loop

You can pair up a function with a while loop. Let us jump to the text editor to
see how you can do that.

def user_info(username, email_id, gender):

info = "My name is " + username.title() + " and I am a new user, and my
email ID is " + email_id.title() + ". My gender is " + gender.title() + "."

return info.title()

while True:

print("\nPlease tell me about yourself.")
user_name = input("Please enter your name: ")

email = input("Please enter your email address: ")

gen = input("Please enter your gender: ")

newuser = user_info(user_name, email, gen)

print("\n The user information is as follows: " + newuser + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Please tell me about yourself.

Please enter your name: John
Please enter your email address: john@gmail.com

Please enter your gender: male

Please tell me about yourself.

Please enter your name: jimmy

Please enter your email address: jimmy@gmail.com

Please enter your gender: male
Please tell me about yourself.

Please enter your name: dora

Please enter your email address: dora@gmail.com

Please enter your gender: female

Please tell me about yourself.

Please enter your name:

The while loop lacks a quit condition therefore it will run on end and will
keep asking about the name of users even after all the users have filled in
their personal information. I will add a break statement in the same code so
that users can exit the program when they have entered all the information.
def user_info(username, email_id, gender):

info = "My name is " + username.title() + " and I am a new user, and my
email ID is " + email_id.title() + ". My gender is " + gender.title() + "."

return info.title()

while True:

print("\nPlease tell me about yourself.")

print("(If you want to exit the program, enter 'q')")

uname = input("Please enter your name: ")

if uname == 'q':

break

uemail = input("Please enter your email address: ")

if uemail == 'q':

break
ugen = input("Please enter your gender: ")

if ugen == 'q':

break

newuser = user_info(uname, uemail, ugen)

print("\n The user information is as follows: " + newuser + ".")

This program will keep running until someone enters ‘q.’ Functions are
flexible in inviting and using different types of data structures. You can easily
pass a list to a specific function. Whether the list is of numbers, names, and
even complex objects like dictionaries. When you do that, the function gets
access to the specific contents of the list.

def user_info(usersinfo):

for userinfo in usersinfo:
mg = "Hi, My name is " + userinfo.title() + ". I am here to take a walk-

in interview."

print(mg)

candidate_names = ['jimmy', 'john', 'dora', 'johnson', 'james']

user_info(candidate_names)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

Hi, My name is Jimmy. I am here to take a walk-in-interview.

Hi, My name is John. I am here to take a walk-in-interview.
Hi, My name is Dora. I am here to take a walk-in-interview.

Hi, My name is Johnson. I am here to take a walk-in-interview.

Hi, My name is James. I am here to take a walk-in-interview.

>>>

If you run into an error, it can possibly be due to a missing argument. See the
following error type.
def user_info(usersinfo):

for userinfo in usersinfo:

mg = "Hi, My name is " + userinfo.title() + ". I am here to take a walk-
in interview."

print(mg)

candidate_names = ['jimmy', 'john', 'dora', 'johnson', 'james']

user_info()
= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/sample.py", line 7, in <module>

user_info()

TypeError: user_info() missing 1 required positional argument: 'usersinfo'

>>>

Therefore, you should not leave the parenthesis of the function empty.
Functions allow you to modify different data types such as lists. You can first
pass a list and then modify it as well. The changes you introduce to a list are
permanent and allow a person to work efficiently. The following will pass the
list without functions.

to_buy_items = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system',
'table lights']

bought_items = []

while to_buy_items:

office = to_buy_items.pop()

print("I am buying the " + office)

bought_items.append(office)

print("\nI have purchased and set up the following items in the office:")

for bought_item in bought_items:
print(bought_item)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I am buying the table lights

I am buying the computer system

I am buying the chair

I am buying the table
I am buying the fan

I am buying the scanner

I am buying the printer

I have purchased and set up the following items in the office:

table lights

computer system

chair
table

fan

scanner

printer

>>>

Now I will write two functions for two separate jobs. The code will be more
efficient and interactive.
def officeitems (to_buy_items, bought_items):

while to_buy_items:

office = to_buy_items.pop()

print("I am buying the " + office)

bought_items.append(office)

def o_bought_items(bought_items):
print("\nI have purchased and set up the following items in the office:")

for bought_item in bought_items:

print(bought_item)

to_buy_items = ['printer', 'scanner', 'fan', 'table', 'chair', 'computer system',
'table lights']

bought_items = []

officeitems(to_buy_items, bought_items)
o_bought_items(bought_items)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

I am buying the table lights

I am buying the computer system

I am buying the chair

I am buying the table

I am buying the fan
I am buying the scanner

I am buying the printer

I have purchased and set up the following items in the office:

table lights

computer system

chair
table

fan

scanner

printer

>>>

Chapter Eight: Object-Oriented Programming

Object-oriented programming is the spirit of Python. It is one of the most
effective approaches to develop software. Object-oriented programming
suggests that you write effective classes to represent real-world situations and
objects. While writing a class, you get the actual feel of automation. You get
to build an object from a class and add appropriate personality traits to the
same. The process of building objects from a class is dubbed as instantiation.

In this chapter, I will explain how to write Python classes and how to create a
lot of instances in a single class. I will also define the actions that I want to
attribute to an object. You will also be able to store the classes in the form of
modules and then import them to your program files.

Python classes help you build complex programs and give you a feel for
programming. You will get to know your code and the bigger concepts
behind these codes. Classes can help you wrap up a lot of work in a short
amount of time and meet complex challenges in the simplest ways. A class
can turn a random program into sophisticated software.
You can model any real-world object with the help of Python classes. In the
next code snippet, I will write a code that will be modeled on a leopard. I will
give the leopard a name, age, and color. I will add behavioral attributes to the
class as well.

Leopard Class

After writing the leopard class, I will add instances to the same that will store
the name, age and color of the object.

class Leopard():

"""This class will build the model of a leopard."""

def__init__(self, lname, lage, lcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.lname = lname

self.lage = lage

self.lcolor = lcolor

def run(self):

print(self.lname.title() + " is running fast out in the wild.")

def attack(self):
print(self.lname.title() + " is now attacking a deer who is grazing in the

meadow.")

This is how you can write a class and add attributes to it. I have created the
class and add a couple of functions.

Explaining the __init__() Method

It is a special method that is automatically run by Python when you create a
new instance from the main Leopard class. The method two underscores in
the front and two in the trail.

I have defined the __init__() method and given it three attributes for the
name, age, and the color of the leopard. Then I added two more methods that
are about the behavioral traits of the leopard we are creating. These methods
will print messages about the running and attacking of the leopard. If you
want to understand it in a simpler form, you can consider the leopard a robot
leopard. This will help you understand how Python helps in automating
machines by modeling them on real-life objects.

Now that we have the structure of the class, we can move on to create
different objects. I will add an instance to the Leopard class.
class Leopard():

"""This class will build the model of a leopard."""

def __init__(self, lname, lage, lcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.lname = lname

self.lage = lage

self.lcolor = lcolor

def run(self):

print(self.lname.title() + " is running fast out in the wild.")

def attack(self):

print(self.lname.title() + " is now attacking a deer who is grazing in the
meadow.")
leopard1 = Leopard('Tame', 9, 'yellow')

print("The name of the leopard is " + leopard1.lname.title() + ".")

print("The age of the leopard is " + str(leopard1.lage) + ".")

print("The color of the leopard is " + leopard1.lcolor.title() + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

The name of the leopard is Tame.
The age of the leopard is 9.

The color of the leopard is Yellow.

>>>

Now I will add more instances to the same class.

class Leopard():

"""This class will build the model of a leopard."""

def __init__(self, lname, lage, lcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.lname = lname
self.lage = lage

self.lcolor = lcolor

def run(self):

print(self.lname.title() + " is running fast out in the wild.")

def attack(self):

print(self.lname.title() + " is now attacking a deer who is grazing in the
meadow.")

leopard1 = Leopard('Tame', 9, 'yellow')

print("The name of the leopard is " + leopard1.lname.title() + ".")

print("The age of the leopard is " + str(leopard1.lage) + ".")
print("The color of the leopard is " + leopard1.lcolor.title() + ".")

leopard2 = Leopard('Fame', 8, 'snow white')
print("The name of the leopard is " + leopard2.lname.title() + ".")

print("The age of the leopard is " + str(leopard2.lage) + ".")

print("The color of the leopard is " + leopard2.lcolor.title() + ".")

leopard3 = Leopard('Storm', 11, 'yellow')

print("The name of the leopard is " + leopard3.lname.title() + ".")

print("The age of the leopard is " + str(leopard3.lage) + ".")

print("The color of the leopard is " + leopard3.lcolor.title() + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py
The name of the leopard is Tame.

The age of the leopard is 9.

The color of the leopard is Yellow.

The name of the leopard is Fame.

The age of the leopard is 8.

The color of the leopard is Snow White.

The name of the leopard is Storm.
The age of the leopard is 11.

The color of the leopard is Yellow.

>>>

Now that I have created an instance for the Leopard class, I will now add to it
some additional methods that will make the robot leopard run wildly and
attack the prey to hunt his meal. This is going to be quite interesting.

class Leopard():

"""This class will build the model of a leopard."""

def __init__(self, lname, lage, lcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.lname = lname
self.lage = lage

self.lcolor = lcolor

def run(self):

print(self.lname.title() + " is running fast out in the wild.")

def attack(self):

print(self.lname.title() + " is now attacking a deer who is grazing in the
meadow.")
leopard1 = Leopard('Tame', 9, 'yellow')

print("The name of the leopard is " + leopard1.lname.title() + ".")

print("The age of the leopard is " + str(leopard1.lage) + ".")

print("The color of the leopard is " + leopard1.lcolor.title() + ".")

leopard1.run()

leopard1.attack()

leopard2 = Leopard('Fame', 8, 'snow white')

print("The name of the leopard is " + leopard2.lname.title() + ".")

print("The age of the leopard is " + str(leopard2.lage) + ".")
print("The color of the leopard is " + leopard2.lcolor.title() + ".")

leopard2.run()

leopard2.attack()

leopard3 = Leopard('Storm', 11, 'yellow')

print("The name of the leopard is " + leopard3.lname.title() + ".")
print("The age of the leopard is " + str(leopard3.lage) + ".")

print("The color of the leopard is " + leopard3.lcolor.title() + ".")

leopard3.run()

leopard3.attack()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

The name of the leopard is Tame.
The age of the leopard is 9.

The color of the leopard is Yellow.

Tame is running fast out in the wild.

Tame is now attacking a deer who is grazing in the meadow.

The name of the leopard is Fame.

The age of the leopard is 8.

The color of the leopard is Snow White.
Fame is running fast out in the wild.

Fame is now attacking a deer who is grazing in the meadow.

The name of the leopard is Storm.

The age of the leopard is 11.

The color of the leopard is Yellow.

Storm is running fast out in the wild.
Storm is now attacking a deer who is grazing in the meadow.

>>>

Python creates two separate instances if you keep the name, age and color of

the leopard same. See the following example.

class Leopard():

"""This class will build the model of a leopard."""

def __init__(self, lname, lage, lcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.lname = lname
self.lage = lage

self.lcolor = lcolor

def run(self):

print(self.lname.title() + " is running fast out in the wild.")

def attack(self):

print(self.lname.title() + " is now attacking a deer who is grazing in the
meadow.")
leopard1 = Leopard('Tame', 9, 'yellow')

print("The name of the leopard is " + leopard1.lname.title() + ".")

print("The age of the leopard is " + str(leopard1.lage) + ".")

print("The color of the leopard is " + leopard1.lcolor.title() + ".")

leopard2 = Leopard('Tame', 9, 'yellow')

print("The name of the leopard is " + leopard2.lname.title() + ".")

print("The age of the leopard is " + str(leopard2.lage) + ".")
print("The color of the leopard is " + leopard2.lcolor.title() + ".")

= RESTART: C:/Users/saifia computers/Desktop/sample.py

The name of the leopard is Tame.

The age of the leopard is 9.

The color of the leopard is Yellow.

The name of the leopard is Tame.

The age of the leopard is 9.

The color of the leopard is Yellow.

>>>
The Fish Class

class Fish():

"""This class will build the model of a leopard."""

def __init__(self, fname, fage, fcolor):

"""here I will initialize the name, age and color attributes of the
class."""

self.fname = fname

self.fage = fage

self.fcolor = fcolor
def swim(self):

print(self.fname.title() + " is swimming at a fast pace against the
current.")

def hunt(self):

print(self.fname.title() + " is hunting smaller fish to feed itself.")

fish1 = Fish('Tuna', 2, 'yellow')

print("The name of the fish is " + fish1.fname.title() + ".")

print("The age of the fish is " + str(fish1.fage) + ".")
print("The color of the fish is " + fish1.fcolor.title() + ".")

fish1.swim()

fish1.hunt()

fish2 = Fish('whale', 50, 'blue & white')

print("The name of the fish is " + fish2.fname.title() + ".")

print("The age of the fish is " + str(fish2.fage) + ".")

print("The color of the fish is " + fish2.fcolor.title() + ".")

fish2.swim()

fish2.hunt()
= RESTART: C:/Users/saifia computers/Desktop/sample.py

The name of the fish is Tuna.

The age of the fish is 2.

The color of the fish is Yellow.

Tuna is swimming at a fast pace against the current.

Tuna is hunting smaller fish to feed itself.
The name of the fish is Whale.

The age of the fish is 50.

The color of the fish is Blue & White.

Whale is swimming at a fast pace against the current.

Whale is hunting smaller fish to feed itself.

>>>

The Bike Class
In this code sample, I will create bike class. I will add the model name, make,
color and year of manufacturing to the class and display the information in a
neatly formatted form.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear

def fullname(self):

fullbikename = str(self.byear) + ' ' + self.bmodel + ' ' + self.bmake + ' '
+ self.bcolor

return fullbikename.title()

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())
= RESTART: C:/Users/saifia computers/Desktop/sample.py

2012 Cg-125 Honda Blue

>>>

The process is similar to that of the creation of a Leopard class. I have
defined the __init__ () method and the self-parameters. Four parameters will
define the make, model, color and year of making of the bike. When you are
creating a new instance to the bike class, you will have to define the make,
model, year and color of the bike. If you miss one of the parameters while
creating an instance, you will see an interpreter error just like the following.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor
self.byear = byear

def fullname(self):

fullbikename = str(self.byear) + ' ' + self.bmodel + ' ' + self.bmake + ' '
+ self.bcolor

return fullbikename.title()

bike1 = Bike('CG-125', 'blue', 2012)

print(bike1.fullname())

>>>= RESTART: C:/Users/saifia computers/Desktop/sample.py

Traceback (most recent call last):
File "C:/Users/saifia computers/Desktop/sample.py", line 16, in <module>

bike1 = Bike('CG-125', 'blue', 2012)

TypeError: __init__() missing 1 required positional argument: 'byear'

>>>

Just like the Leopard class, you can create as many instances for the Bike
class as you need. This program is helpful if you are looking forward to
owning a bike showroom. You can fill in the bike class with the latest
information whenever a new bike gets registered with the showroom for sale.
This is how you allow your customers to view each bike and its specifications
in a fast and efficient way. I will now add more instances to the Bike class to
show how you can store more information to the database through a working
Bike class.

class Bike():
"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake
self.bcolor = bcolor

self.byear = byear

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)

print(bike2.fullname())
bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)

print(bike4.fullname())
= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

>>>
Each attribute in the Bike class demands an initial value. You can set the
initial value at zero. It also can be an empty string. When you are running a
showroom, you need to tell your customers how many kilometers the bike
has run on the road. To achieve this objective, you can integrate a method
into the program. See the changes in the code. I will include an odometer
reading method for the Bike class.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):
fullbikename = "We have a bike that hit the markets in " +

str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def read_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())

bike1.read_odometer()

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)
print(bike2.fullname())

bike2.read_odometer()

bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())

bike3.read_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike4.read_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)

print(bike4.fullname())
bike5.read_odometer()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

This bike has run 0 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has run 0 kilometers on the road.
We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.

This bike has run 0 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 0 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 0 kilometers on the road.

>>>
Python calls the __init__() method to form a new instance. It stores the
values in the form of attributes just as it did for the past example. Python has
now created a new attribute and adjusts its value to zero. Coupled with the
attribute comes a new method, namely read_odometer(). This is how your
customers can easily read the mileage of the bike. It is also helpful for you, as
you can easily track how many miles your car has run.

You have the power to change the value of the attributes in different ways.

You can directly change the value of the attribute by an instance. You can set
its value with the help of a method or increment the same by a method. In the
following code sample, I will test how we can make the above-mentioned
changes. I have also changed the read_odometer() method to
reading_odometer() method to make more current and interactive.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear
self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())
bike1.odometer_reading = 21

bike1.reading_odometer()

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)

print(bike2.fullname())

bike2.odometer_reading = 27

bike2.reading_odometer()

bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())
bike3.odometer_reading = 30

bike3.reading_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike4.reading_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)
print(bike4.fullname())

bike5.reading_odometer()

>>>= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

This bike has run 21 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has run 27 kilometers on the road.
We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.

This bike has run 30 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 0 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 0 kilometers on the road.

>>>

You can also change the default value at 50 kilometers to manage the
difference of mileage consumed in transporting the bike from one place to
another.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor
self.byear = byear

self.odometer_reading = 50

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):
print("This bike has run " + str(self.odometer_reading) + " kilometers

on the road.")

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)
print(bike1.fullname())

bike1.odometer_reading = 100

bike1.reading_odometer()

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)

print(bike2.fullname())

bike2.odometer_reading = 500

bike2.reading_odometer()

bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())
bike3.odometer_reading = 700

bike3.reading_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike4.reading_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)
print(bike4.fullname())

bike5.reading_odometer()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

This bike has run 100 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has run 500 kilometers on the road.
We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.

This bike has run 700 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 50 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 50 kilometers on the road.

>>>

Proper Modification of Values

It is quite helpful to have a bunch of methods that would update different
attributes of your program. Instead of directly accessing multiple attributes,
you can pass the latest value to a newly added method and let it handle
updating the program. The program will do the updating internally and you
do not have to worry about it anymore. The new method will be dubbed as
updating_the_odometer().

class Bike():
"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake
self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 50

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()
def reading_odometer(self):

print("This bike has run" + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())

bike1.updating_the_odometer(100)

bike1.reading_odometer()

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)
print(bike2.fullname())

bike2.updating_the_odometer(1000)

bike2.reading_odometer()

bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())

bike3.updating_the_odometer(700)
bike3.reading_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike4.reading_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)

print(bike4.fullname())

bike5.reading_odometer()
= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

This bike has 100 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has 1000 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.
This bike has 700 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has 50 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has 50 kilometers on the road.
>>>

You can make further experiments with the odometer method. A major
problem in a showroom is keeping tabs on who is reversing the odometer of
the motorbikes. If you are a true businessman, you will not like to dupe your
customers. However, sometimes it is not that you who want to dupe the
customers. It is your employees who are trying to bag extra profit in addition
to their commission. You must stop this practice if you want to live up to
your customers' expectations and keep your reputation intact. You can add
some logic to your program to ensure no rolling back of the odometer by
anyone. I will integrate an if-else statement to the Bike class and do a few
changes to make it possible.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0
def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):
self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())

bike1.updating_the_odometer(100)
bike1.reading_odometer()

bike2 = Bike('F 900 R', 'BMW', 'black', 2014)

print(bike2.fullname())

bike2.updating_the_odometer(1000)

bike2.reading_odometer()

bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())
bike3.updating_the_odometer(700)

bike3.reading_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)

print(bike4.fullname())

bike4.updating_the_odometer(40)

bike4.reading_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)

print(bike5.fullname())

bike5.updating_the_odometer(0)
bike5.reading_odometer()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.

This bike has run 100 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has run 1000 kilometers on the road.
We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.

This bike has run 700 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 40 kilometers on the road.

We Have A Bike That Hit The Markets In 2018. The Model Is Heritage
Classic. The Bike Is Manufactured By Harley Davidson. Its Color Is Black.

This bike has run 0 kilometers on the road.

>>>
You can increase the value of an attribute by introducing a simple method to
the program. I will another method to the class to make it work. I will add
incremental values to each of the five instances I have created. The method
will tell Python to add up the incremental value to the existing value and run
the program. The incremented value will be displayed in a separate print
statement in the code.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):
fullbikename = "We have a bike that hit the markets in " +

str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage
if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

bike1 = Bike('CG-125', 'Honda', 'blue', 2012)

print(bike1.fullname())

bike1.updating_the_odometer(100)

bike1.reading_odometer()

bike1.incrementing_odometer(1000)

bike1.reading_odometer()
bike2 = Bike('F 900 R', 'BMW', 'black', 2014)

print(bike2.fullname())

bike2.updating_the_odometer(1000)

bike2.reading_odometer()

bike2.incrementing_odometer(500)

bike2.reading_odometer()
bike3 = Bike('F 900 XR', 'BMW', 'blue', 2014)

print(bike3.fullname())

bike3.updating_the_odometer(700)

bike3.reading_odometer()

bike3.incrementing_odometer(1000)

bike3.reading_odometer()

bike4 = Bike('R 1250 RT', 'BMW', 'brown', 2016)
print(bike4.fullname())

bike4.updating_the_odometer(40)

bike4.reading_odometer()

bike4.incrementing_odometer(1000)

bike4.reading_odometer()

bike5 = Bike('Heritage Classic', 'Harley Davidson', 'black', 2018)
print(bike5.fullname())

bike5.updating_the_odometer(0)

bike5.reading_odometer()

bike5.incrementing_odometer(10000)

bike5.reading_odometer()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2012. The Model Is Cg-125. The
Bike Is Manufactured By Honda. Its Color Is Blue.
This bike has run 100 kilometers on the road.

This bike has run 1100 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 R. The
Bike Is Manufactured By BMW. Its Color Is Black.

This bike has run 1000 kilometers on the road.

This bike has run 1500 kilometers on the road.

We Have A Bike That Hit The Markets In 2014. The Model Is F 900 Xr. The
Bike Is Manufactured By BMW. Its Color Is Blue.
This bike has run 700 kilometers on the road.

This bike has run 1700 kilometers on the road.

We Have A Bike That Hit The Markets In 2016. The Model Is R 1250 Rt.
The Bike Is Manufactured By BMW. Its Color Is Brown.

This bike has run 40 kilometers on the road.

This bike has run 1040 kilometers on the road.

We Have A Bike That Hit The Markets In 2018. The Model Is Heritage
Classic. The Bike Is Manufactured By Harley Davidson. Its Color Is Black.

This bike has run 0 kilometers on the road.
This bike has run 10000 kilometers on the road.

>>>

Chapter Nine: The Inheritance Class

Now that you have learned how to write a class, it is pertinent to mention that
Python classes are well known for the ease of use they offer to programmers.
Once you have written a class, you can reuse it multiple times. There is a
process called inheritance in which a subclass is inherited from the parent
class. The inherited class is named that way because it inherits the attributes
of the parent class. The inherited class is dubbed as the child class. It can use
each attribute and method of the parent class. However, you also can create
new attributes only for the child class.

Just as you did for the parent class, you will also have to use the __init__()
method for the child class. I will create a child class of racer bikes.

class Bike():
"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake
self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):
print("This bike has run " + str(self.odometer_reading) + " kilometers

on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage
else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class RacerBike(Bike):

def __init__(self, bmodel, bmake, bcolor, byear):

super().__init__(bmodel, bmake, bcolor, byear)

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')
print(racer1.fullname())

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.
We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

>>>

The most important thing to keep in mind while creating a child class is to

keep the child class inside the parent class. The name of the child class must
include parenthesis that carry the name of the parent class. I have added one
additional function, the super function that aids Python in forming
connections between the child class and the parent class. The child class has
taken all the attributes of the parent class. I have not yet added any special
attribute to the racer bike.

Child Class in Python 2.7

If you are using Python 2.7, the child class will appear to be a bit different.
See the following code and note the difference.

class Bike():
"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake
self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()
def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):
self.odometer_reading += bmileage

class RacerBike(Bike):
def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())
racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

The only change I made was in the super function. I filled in the parenthesis
with the name of the child class and self-parameter. An interesting thing is
that this change does not affect the result of the program, no matter if you do
it in Python 3 or 2.7. However, the former technique will not work in 2.7.
You can see the result of the program as under:

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.
>>>

Child Class Attributes

Once the child class inherits the parent class's attributes, you can go on to add
to it new methods and attributes. I will use the same program and add new
attributes for the child class.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor
self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):
print("This bike has run " + str(self.odometer_reading) + " kilometers

on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class RacerBike(Bike):

def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

self.performance_tire = 'three textile layered'
def describe_tires(self):

print("This racer bike has " + self.performance_tire + " performance
tires.")

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())

racer1.describe_tires()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')
print(racer2.fullname())

racer2.describe_tires()

racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_tires()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.
This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has three textile layered performance tires.

>>>

In the next code snippet, I will add another attribute to the child class. This
attribute shows why a racer bike has a higher rate of aerodynamic efficiency.

class Bike():
"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake
self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()
def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:
print("You are not authorized to roll back the reading of the

odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class RacerBike(Bike):

def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

self.performance_tire = 'three textile layered'
self.aerodynamic_efficiency = 'better lift/drag ratio'

def describe_tires(self):

print("This racer bike has " + self.performance_tire + " performance
tires.")

def describe_aerodynamics(self):

print("This racer bike has " + self.aerodynamic_efficiency + " for
improved aerodynamic efficiency.")

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')
print(racer1.fullname())

racer1.describe_tires()

racer1.describe_aerodynamics()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer2.describe_tires()

racer2.describe_aerodynamics()
racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_tires()

racer3.describe_aerodynamics()

= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.

This racer bike has three textile layered performance tires.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.
This racer bike has three textile layered performance tires.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has three textile layered performance tires.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

>>>
Overriding Methods from Parent Class

You can override methods from the parent class by defining a method with
the same name as in the parent class. Python will then block the method's
execution from the parent class, allowing the child class to override the
method.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class RacerBike(Bike):

def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

self.performance_tire = 'three textile layered'

self.aerodynamic_efficiency = 'better lift/drag ratio'

def describe_tires(self):

print("This racer bike has " + self.performance_tire + " performance
tires.")

def describe_aerodynamics(self):

print("This racer bike has " + self.aerodynamic_efficiency + " for
improved aerodynamic efficiency.")

def incrementing_odometer(self, bmileage):

print("I cannot increment the odometer.")

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())
racer1.describe_tires()

racer1.describe_aerodynamics()

racer1.reading_odometer()

racer1.incrementing_odometer(1000)

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())
racer2.describe_tires()

racer2.describe_aerodynamics()

racer2.reading_odometer()

racer2.incrementing_odometer(1000)

racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_tires()
racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

= RESTART: C:/Users/saifia computers/Desktop/sample.py

>>>

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.
This racer bike has three textile layered performance tires.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has three textile layered performance tires.
This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has three textile layered performance tires.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.
This bike has run 0 kilometers on the road.

I cannot increment the odometer.

>>>

An interesting about classes is the flexibility they have to offer. For example,
instead of making the performance tires an attribute, we can turn it into a
separate class. After that we can add as many instances to this new class as
we want to.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor

self.byear = byear
self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):
print("This bike has run " + str(self.odometer_reading) + " kilometers

on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:
print("You are not authorized to roll back the reading of the

odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class Performancetires():

def __init__(self, performance_tire= 'three textile layered'):

self.performance_tire = performance_tire

def describe_performancetires(self):
print("This racer bike has " + self.performance_tire + " performance

tires.")

class RacerBike(Bike):
def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

self.performancetires = Performancetires()

self.aerodynamic_efficiency = 'better lift/drag ratio'

def describe_aerodynamics(self):

print("This racer bike has " + self.aerodynamic_efficiency + " for
improved aerodynamic efficiency.")

def incrementing_odometer(self, bmileage):
print("I cannot increment the odometer.")

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())

racer1.describe_aerodynamics()

racer1.reading_odometer()

racer1.incrementing_odometer(1000)
racer1.performancetires.describe_performancetires()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer2.describe_aerodynamics()

racer2.reading_odometer()

racer2.incrementing_odometer(1000)

racer2.performancetires.describe_performancetires()
racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

racer3.performancetires.describe_performancetires()
= RESTART: C:/Users/saifia computers/Desktop/sample.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.
We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.
This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

>>>

Chapter Ten: Importing Classes

You can create a module of Python classes and use it later on to create
different programs. When you save a Python program with the extension .py,
it becomes a Python module. I have saved it with a proper file name. I will
now open a new file, name it as bike.py and save the following code.

class Bike():

"""This class will build the model of a bike."""

def __init__(self, bmodel, bmake, bcolor, byear):

self.bmodel = bmodel

self.bmake = bmake

self.bcolor = bcolor
self.byear = byear

self.odometer_reading = 0

def fullname(self):

fullbikename = "We have a bike that hit the markets in " +
str(self.byear) + ". The model is " + self.bmodel + ". The bike is
manufactured by " + self.bmake + ". Its color is " + self.bcolor + "."

return fullbikename.title()

def reading_odometer(self):

print("This bike has run " + str(self.odometer_reading) + " kilometers
on the road.")

def updating_the_odometer(self, bmileage):

self.odometer_reading = bmileage

if bmileage >= self.odometer_reading:

self.odometer_reading = bmileage

else:

print("You are not authorized to roll back the reading of the
odometer.")

def incrementing_odometer(self, bmileage):

self.odometer_reading += bmileage

class Performancetires():
def __init__(self, performance_tire= 'three textile layered'):

self.performance_tire = performance_tire

def describe_performancetires(self):

print("This racer bike has " + self.performance_tire + " performance
tires.")

class RacerBike(Bike):

def __init__(self, bmodel, bmake, bcolor, byear):

super(RacerBike,self).__init__(bmodel, bmake, bcolor, byear)

self.performancetires = Performancetires()
self.aerodynamic_efficiency = 'better lift/drag ratio'

def describe_aerodynamics(self):

print("This racer bike has " + self.aerodynamic_efficiency + " for
improved aerodynamic efficiency.")

def incrementing_odometer(self, bmileage):

print("I cannot increment the odometer.")

Importing Multiple Classes

I have saved the file and closed it. Now I will open a new file and name it
my_bike.py. I’ll save it in the same location where I have saved bike.py. For
example, in my case I have saved both on my desktop to access them easily.
Whatever the location is, it should be the same for the two files or the code
will not work in the way you have foreseen it. Now that the file my_bike has
been saved. I will now write the code in it to import the code from the file
bike.py.

from bike import Bike

from bike import Performancetires

from bike import RacerBike

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')
print(racer1.fullname())

racer1.describe_aerodynamics()

racer1.reading_odometer()

racer1.incrementing_odometer(1000)

racer1.performancetires.describe_performancetires()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')
print(racer2.fullname())

racer2.describe_aerodynamics()

racer2.reading_odometer()

racer2.incrementing_odometer(1000)

racer2.performancetires.describe_performancetires()

racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())
racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

racer3.performancetires.describe_performancetires()

>>>= RESTART: C:/Users/saifia computers/Desktop/my_bike.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.
This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.
This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.
I cannot increment the odometer.

This racer bike has three textile layered performance tires.

>>>

As all the three classes were written in the file bike.py, I have imported all of
them in a sequence. As there are three classes stored in a single module, if
you try to import only one of them, you will see an error in the interpreter.
The error will be like this.

from bike import Bike

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())
racer1.describe_aerodynamics()

racer1.reading_odometer()

racer1.incrementing_odometer(1000)

racer1.performancetires.describe_performancetires()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer2.describe_aerodynamics()

racer2.reading_odometer()

racer2.incrementing_odometer(1000)

racer2.performancetires.describe_performancetires()
racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

racer3.performancetires.describe_performancetires()
= RESTART: C:/Users/saifia computers/Desktop/my_bike.py

Traceback (most recent call last):

File "C:/Users/saifia computers/Desktop/my_bike.py", line 3, in <module>

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

NameError: name 'RacerBike' is not defined

>>>

However, if you save a single class in one module, you can correct this error.
from bike import Bike

racer1 = Bike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())

racer2 = Bike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer3 = Bike('Alpenchallenge', 'BMC', 'Red', '2012')
print(racer2.fullname())

= RESTART: C:/Users/saifia computers/Desktop/my_bike.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel

Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

>>>
Importing Module

You also have an option to import a complete module and then access all the
classes in it. This is the simplest and the easiest of the methods to execute a
program.

import bike

racer1 = bike.RacerBike('URS: Gravel Riding', 'BMC', 'Grey',
'2017')

print(racer1.fullname())

racer1.describe_aerodynamics()
racer1.reading_odometer()

racer1.incrementing_odometer(1000)

racer1.performancetires.describe_performancetires()

racer2 = bike.RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer2.describe_aerodynamics()

racer2.reading_odometer()
racer2.incrementing_odometer(1000)

racer2.performancetires.describe_performancetires()

racer3 = bike.RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

racer3.performancetires.describe_performancetires()

= RESTART: C:/Users/saifia computers/Desktop/my_bike.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.
This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.
This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.
This racer bike has three textile layered performance tires.

>>>

Importing All Classes

There is a trick to import all classes at once.

from bike import *

racer1 = RacerBike('URS: Gravel Riding', 'BMC', 'Grey', '2017')

print(racer1.fullname())

racer1.describe_aerodynamics()

racer1.reading_odometer()

racer1.incrementing_odometer(1000)
racer1.performancetires.describe_performancetires()

racer2 = RacerBike('Trackmachine', 'BMC', 'Blue', '2015')

print(racer2.fullname())

racer2.describe_aerodynamics()

racer2.reading_odometer()

racer2.incrementing_odometer(1000)
racer2.performancetires.describe_performancetires()

racer3 = RacerBike('Alpenchallenge', 'BMC', 'Red', '2012')

print(racer2.fullname())

racer3.describe_aerodynamics()

racer3.reading_odometer()

racer3.incrementing_odometer(5000)

racer3.performancetires.describe_performancetires()
= RESTART: C:/Users/saifia computers/Desktop/my_bike.py

We Have A Bike That Hit The Markets In 2017. The Model Is Urs: Gravel
Riding. The Bike Is Manufactured By Bmc. Its Color Is Grey.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.
We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.

This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

We Have A Bike That Hit The Markets In 2015. The Model Is
Trackmachine. The Bike Is Manufactured By Bmc. Its Color Is Blue.
This racer bike has better lift/drag ratio for improved aerodynamic efficiency.

This bike has run 0 kilometers on the road.

I cannot increment the odometer.

This racer bike has three textile layered performance tires.

>>>

Conclusion

Now that you have made it to the end of the book, I hope you have
understood each concept of Python coding to the hilt. I hope that you have
practiced each code very well and have also digested it well.

The next step is to keep practicing the codes that I have given and explained
the book. Python coding is easier compared to other programming languages.
The editor is quite helpful as the multiple colors in it guide you through the
codes. The most interesting feature of Python is the display of errors. Each
error carries in it its solution as well as it indicates you where the problem
lies. You can track the error, rectify it, and run the program again.

You have learned from the basics like datatypes to the advanced stages like
object-oriented programming. All the concepts were explained with due
depth so that when you have gone through them, you are well-versed in
executing them yourself.
Coding knowledge is likely to slip off your mind right after you finish the
book. Therefore, the best method to retain this knowledge is to keep
practicing, creating new programs. You will start enjoying it finally. Python
is the best language if you are interested in automation, machine learning,
and deep learning models. You can use it to be a master of artificial
intelligence systems and data mining systems.

References

https://phoenixnap.com/kb/how-to-install-python-3-windows

	Introduction
	Chapter One: Make a Start
	Python 3 Installation
	Executable Installer
	Run It

	Chapter Two: Python Variables and Data Types
	Python Variables
	Naming Variables
	Python Datatypes
	Python Strings
	Python Numbers

	Chapter Three: Python Lists and Tuples
	Modifying Lists
	Append Method
	Del Method
	Pop Method
	Remove Method
	List Organization
	The sort() Method
	Index Errors
	Create A Loop
	List Slicing
	Copying

	Python Tuples
	Looping

	Chapter Four: Python Conditionals
	The if-else Statement
	The if-elif-else Chain
	If Statements and Lists
	Multiple Lists

	Chapter Five: Python Dictionaries
	Removing Pairs
	Looping
	The sorted() Method
	Nesting
	Random Dictionary Methods

	Chapter Six: Input and Python Loops
	The input() Function
	While Loops
	The Break Keyword
	Loops, Lists, Dictionaries

	Chapter Seven: Python Functions
	Defining Functions
	Arguments and Parameters
	Positional Arguments
	Keyword Arguments
	Default Values
	Returning Values
	Function and Dictionary
	Function and While Loop

	Chapter Eight: Object-Oriented Programming
	Leopard Class
	Explaining the __init__() Method
	The Fish Class
	The Bike Class
	Proper Modification of Values

	Chapter Nine: The Inheritance Class
	Child Class in Python 2.7
	Child Class Attributes
	Overriding Methods from Parent Class

	Chapter Ten: Importing Classes
	Importing Multiple Classes
	Importing Module
	Importing All Classes

	Conclusion
	References

