
FOR
DATA SCIENCE

AN OVERVIEW

NumPy is a portmanteau from "Numerical Python"

Let's start at the top...

NumPy contains a broad array of functionality for fast
numerical & mathematical operations in Python

The core data-structure within NumPy is an ndArray
(or n-dimensional array)

Behind the scenes - much of the NumPy functionality
is written in the programming language C

NumPy functionality is used in other popular Python
packages including Pandas, Matplotlib, & scikit-
learn!

Don't be fooled...

1 Dimensional Array

At first glance, a NumPy array resembles a List (or in the case
of multi-dimensional arrays, a List of Lists...)

The similarities however are mainly superficial!

NumPy provides us the ability to do so much more than we
could do with Lists, and at a much, much faster speed!

>> [1, 2, 3]

>> array ([1, 2, 3])

List

2 Dimensional Array

>> [[1, 2, 3] , [4, 5, 6]]

>> array([[1, 2, 3],
 [4, 5, 6]])

List of Lists

How is NumPy so fast?

NumPy is written mostly in C which is much faster
than Python

NumPy arrays are used with homogenous
(same) data types only, whereas lists (for example)
can contain any data type. This fact means
NumPy can be more efficient with its memory
usage

NumPy has the ability to divide up sub-tasks and
run them in parallel!

Getting started...

pip install numpy

Installing NumPy

If you have Python, you can install NumPy using the following
command...

import numpy as np

Importing NumPy

To ensure you can access all of the amazing functionality
from within NumPy - you import it like so...

Note - if you're using a distribution such as Anaconda then
NumPy comes pre-installed!

Creating Arrays 1

np.array([1,2,3])
>> array([1, 2, 3])

Creating a 1-D array

Creating a 2-D array

Creating an array filled with zeros

np.array([[1,2,3],[4,5,6]])
>> array([[1, 2, 3],
 [4, 5, 6]])

np.zeros(5)
>> array([0., 0., 0., 0., 0.])

Creating an array filled with ones

np.ones(5)
>> array([1., 1., 1., 1., 1.])

Creating Arrays 2

np.arange(2,18,4)
>> array([2, 6, 10, 14])

Creating an array of evenly spaced values (start, stop, step)

Creating an array of random values (shown as 2x3 matrix)

Creating an array filled with given value (dimensions, value)

np.random.random((2,3))
>> array([[0.99800537, 0.65104252, 0.15230364],
 [0.25347108, 0.85345208, 0.44232692]])

np.full(4, 10)
>> array([10, 10, 10, 10]))

Creating an empty array (fills with arbitrary, un-initialized values)

np.empty(2)
>> array([1.05116502e-311, 0.00000000e+000])

Creating Arrays 3

np.linspace(1,3,5)
>> array([1. , 1.5, 2. , 2.5, 3.])

Creating an array of evenly spaced values (low, high, num-values)

Creating an array of random integers (low, high, size)

np.random.randint(2,7,5)
>> array([3, 3, 4, 4, 6])

Summary Operations 1

my_1d_array = np.random.randint(0,10,7)
>> array([7, 6, 4, 2, 9, 6, 7])

Example 1-Dimensional Array

Max, Min, Mean, Sum, Standard Deviation

my_1d_array.max()
>> 9
my_1d_array.min()
>> 2

my_1d_array.mean()
>> 5.857142857142857

my_1d_array.sum()
>> 41
my_1d_array.std()
>> 2.099562636671296

Summary Operations 2

my_2d_array = np.random.randint(0,10,(2,3))
>> array([[6, 1, 7],
 [9, 0, 6]])

Example 2-Dimensional Array

Maximum Value (of all values in array)

my_2d_array.max()
>> 9

Maximum Value (of the values in "column")

my_2d_array.max(axis = 0)
>> array([9, 1, 7])

Maximum Value (of the values in "row")

my_2d_array.max(axis = 1)
>> array([7, 9])

Math Operations 1

a = np.array([1,2,3,4,5])
>> array([1, 2, 3, 4, 5])

Example 1-Dimensional Array

Addition, Subtraction, Multiplication, Division

a + 10
>> array([11, 12, 13, 14, 15])
a - 10
>> array([-9, -8, -7, -6, -5])

a * 10
>> array([10, 20, 30, 40, 50])

a / 10
>> array([0.1, 0.2, 0.3, 0.4, 0.5])

Math Operations 2

a = np.array([-2,-1,0,1,2])
>> array([-2, -1, 0, 1, 2])

Example 1-Dimensional Array

Square, Square Root, Trigonometry, Signs (Positive or Negative)

np.square(a)
>> array([4, 1, 0, 1, 4])
np.sqrt(a)
>> array([nan, nan, 0. , 1. , 1.41421356])
np.sin(a)
>> array([-0.9092, -0.8414, 0. , 0.8414, 0.9092])

np.cos(a)
>> array([-0.4161, 0.5403, 1. , 0.5403, -0.4161])
np.tan(a)
>> array([2.1850, -1.5574, 0. , 1.5574, -2.1850])
np.sign(a)
>> array([-1, -1, 0, 1, 1])

Math Operations 3

a = np.array([1,2,3])
b = np.array([4,5,6])

Example: Multiple Arrays

Arithmetic on multiple arrays & dot product

np.add(a,b) # or a + b
>> array([5, 7, 9])
np.subtract(a,b) # or a - b
>> array([-3, -3, -3])
np.multiply(a,b) # or a * b
>> array([4, 10, 18])

np.divide(a,b) # or a / b
>> array([0.25, 0.4 , 0.5])
np.dot(a,b)
>> 32

Array Comparison

a = np.array([1,2,3])
b = np.array([4,2,6])

Example: Multiple Arrays

Element-wise comparison (which elements are equal)

a == b
>> array([False, True, False])

Array comparison (are arrays equal)

np.array_equal(a, b)
>> False

Accessing Elements 1

a = np.array([1,2,3,4,5])
>> array([1, 2, 3, 4, 5])

Example 1-Dimensional Array

Element at specific index

a[0]
>> 1

Slicing

a[1:4]
>> array([2, 3, 4])

Last Element

a[-1]
>> 5

Accessing Elements 2
Example 2-Dimensional Array

Element at specific index (here this returns "row" 1)

a[0]
>> array([1, 2, 3])

Element at specific index (here this returns "row" 1, "column" 2)

a[0][1]
>> 2

a = np.array([[1,2,3],[4,5,6]])
>> array([[1, 2, 3],
 [4, 5, 6]])

Re-shaping Arrays
Example 2-Dimensional Array

Re-shape (here to 3 rows & 2 columns)

a.reshape(3,2)
>> array([[1, 2],
 [3, 4],
 [5, 6]])

Re-shape (here to a 1-Dimensional array)

a.flatten() # or a.reshape(6) or a.ravel()
>> array([1, 2, 3, 4, 5, 6])

a = np.array([[1,2,3],[4,5,6]])
>> array([[1, 2, 3],
 [4, 5, 6]])

Stacking Arrays

Horizontal Stack

np.hstack((a,b))
>> array([1, 2, 3, 4, 5, 6])

Vertical Stack

np.vstack((a,b))
>> array([[1, 2, 3],
 [4, 5, 6]])

a = np.array([1,2,3])
>> array([1, 2, 3])

b = np.array([4,5,6])
>> array([4, 5, 6])

Example: Multiple Arrays

Array Features
Example 2-Dimensional Array

a = np.array([[1,2,3],[4,5,6]])
>> array([[1, 2, 3],
 [4, 5, 6]])

Array Shape (length of each dimension)

a.shape
>> (2, 3)

Number of dimensions

a.ndim
>> 2

Number of elements

a.size
>> 6

A Planetary Example!
Here we are going to calculate the volumes of the eight planets
in our solar system - based upon their radius measurements.

We are going to do this all using NumPy!

After that - we're going to crank it up! Instead of just doing this
for eight planets, we will run this for one million made-up
planets.

This will not only showcase some of the key functionality of
NumPy - but also the incredible speed at which it can run
calculations!

Our data...
We have a NumPy array holding the radius distance for each of
the eight planets!

Planet Radius (km)

Mercury 2439.7

Venus 6051.8

Earth 6371

Mars 3389.7

Jupiter 69911

Saturn 58232

Uranus 25362

Neptune 24622

radii = np.array([2439.7, 6051.8, 6371, 3389.7, 69911, 58232, 25362, 24622])

>> array([2439.7, 6051.8, 6371. , 3389.7, 69911. , 58232. , 25362. , 24622.])

Calculating the volumes!
Here we will create a new array called volumes and we will
apply the formula for calculating volume from radius to our
radii array!

volumes = 4/3 * np.pi * radii**3

>> [6.08e+10 9.28e+11 1.08e+12 1.63e+11, 1.43e+15 8.27e+14 6.83e+13 6.25e+13]

Formula
4

3

volume (sphere) = r
3

radius

Because of the way NumPy works - it does this very, very quickly

It applies the volume formula to each of the values of the radii
array essentially in one go, rather than looping through them
one at a time, meaning the overall time taken is low.

Eight is easy though - let's crank it up a notch...

Cranking it up...
Instead of the radius measurements for eight planets, we will
create an array that contains measurements for one million
made-up planets. To do this we use the random functionality
within NumPy to ask for one million random integers, each
which will be a value between 1 and 1,000...

volumes = 4/3 * np.pi * radii**3

radii = np.random.randint(1, 1000, 1000000)

Since we have over-written the radii array, we can run the same
volume calculation code below...

Before you hit run - how long do you think it will take to run this
calculation for one million planets?!

Run! Wow, NumPy is faaast!

It processed this for one million planets, in a fraction of a
second! This is a simple example of why this can be such a
useful library for tasks in Python!

Do you want to learn more
about this topic - and how

to apply it in the real
world?

Do you want to land an
incredible role in the

exciting, future-proof, and
lucrative field of Data

Science?

LEARN THE
RIGHT SKILLS

A curriculum based on

input from hundreds of
leaders, hiring managers,

and recruiters

https://data-science-infinity.teachable.com

BUILD YOUR
PORTFOLIO

Create your professionally
made portfolio site that
 includes 10 pre-built

projects

https://data-science-infinity.teachable.com

EARN THE
CERTIFICATION

Prove your skills with the

DSI Data Science
Professional Certification

https://data-science-infinity.teachable.com

LAND AN
AMAZING ROLE

Get guidance & support

based upon hundreds of
interviews at top tech

companies

https://data-science-infinity.teachable.com

Taught by former Amazon
& Sony PlayStation Data
Scientist Andrew Jones

What do DSI
students say?

"I had over 40 interviews without an offer.
After DSI I quickly got 7 offers including
one at KPMG and my amazing new role
at Deloitte!"

- Ritesh

"The best program I've been a part of,
hands down"

- Christian

"DSI is incredible - everything is taught in
such a clear and simple way, even the
more complex concepts!"

- Arianna

"I got it! Thank you so much for all your
advice & help with preparation - it truly
gave me the confidence to go in and
land the job!"

- Marta

"I've taken a number of Data Science
courses, and without doubt, DSI is the
best"

- William

"One of the best purchases towards
learning I have ever made"

- Scott

"I learned more than on any other
course, or reading entire books!"

- Erick

"I started a bootcamp last summer
through a well respected University, but I
didn't learn half as much from them!"

- GA

"100% worth it, it is amazing. I have
never seen such a good course and I
have done plenty of them!"

- Khatuna

"This is a world-class Data Science
experience. I would recommend this
course to every aspiring or professional
Data Scientist"

- David

"Andrew's guidance with my Resume &
throughout the interview process helped
me land my amazing new role (and at a
much higher salary than I expected!)"

- Barun

"DSI is a fantastic community & Andrew
is one of the best instructors!"

- Keith

"I'm now at University, and my Data
Science related subjects are a piece of
cake after completing this course!

I'm so glad I enrolled!" - Jose

"In addition to the great content,
Andrew's dedication to the growing DSI
community is amazing"

- Sophie

"The course has such high quality
content - you get your ROI even from the
first module"

- Donabel

"The Statistics 101 section was awesome!
 I have now started to get confidence in
Statistics!"

- Shrikant

"I can't emphasise how good this
programme is...well worth the
investment!"

- Dejan

...come and join the
hundreds & hundreds of

other students getting the
results they want!

https://data-science-infinity.teachable.com

"I'd completed my Master's in Business
Analytics, but DSI was the first time I felt
I had a solid foundation in Data Science
to go forward with"

- Scott

